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CHAPTER 1

Introduction

The theory of symmetric spaces was initiated by E. Cartan in 1926. While he
was studying Riemannian locally symmetric spaces, he discovered, via the paper
by H. Weyl [Wey26], that the problem he was studying was equivalent to the one
he had studied some twelve years earlier, namely the classification of real forms of
complex semisimple Lie algebras.

The original definition of symmetric space belongs to the realm of Riemannian
geometry, in that a Riemannian symmetric space was originally defined as a Rie-
mannian manifold whose curvature tensor is invariant under parallel translation.
While the Riemannian geometrical acception has not faded, Cartan discovered that
symmetric spaces are as related to Riemannian geometry as they are to Lie groups.

There are at least three good reasons to study symmetric spaces:

• They connect seemingly different fields of mathematics, and hence each one
of the fields can enhance the knowledge about the other. As Cartan put it:
”The theory of groups and geometry, leaning on one another, allow one to
take up and solve a great variety of problems”, [Car26].
• Many well known examples are indeed symmetric spaces.
• They are beautiful!

Example 1.0.1. (1) The Euclidean n-space E := (Rn, gEucl) is a symmetric
space. Its sectional curvature vanishes everywhere. Its isometry group is
O(n) nRn.

(2) The unit sphere Sn in Rn+1 equipped with the Riemannian metric induced
by Rn+1 is a symmetric space whose sectional curvature is everywhere equal
to one. Its isometry group is O(n,R).

(3) Let q : Rn+1 → R be the quadratic form

q(x, y) := x1y1 + · · ·+ xnyn − xn+1yn+1 .

Then

Hn
R := {x ∈ Rn+1 : q(x, x) = −1 and xn+1 > 0}

is the (real)1 hyperbolic n-space and, equipped with the restriction of the
Euclidean metric on Rn+1, it is a symmetric space whose sectional curvature

1We could define also the complex and quaternionic hyperbolic space. Let K = R,C or H.
Recall that the quaternions H is a four dimensional algebra over R with basis {1, i, j, k}, where
1 is central, ij = k, jk = i, ki = j, and i2 = j2 = k2 = −1. Endow the space Kn+1 with the
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4 1. INTRODUCTION

is identically equal to −1. Its isometry group is O(n, 1)+, where

O(n, 1) := {g ∈ GL(n+ 1,R) : q(gx, gy) = q(x, y) for every x, y ∈ Rn+1}
and

O(n, 1)+ := {g ∈ O(n, 1) : gHn
R = Hn

R} .

In each of the above cases it is easy to see that the isometry group acts transitively
on the symmetric space.

1.1. Overview

1.1.1. Riemannian Geometrical Characterization of Symmetric Spaces.

Convention. A manifold will always assumed to be connected, second countable,
paracompact, Hausdorff and finite dimensional. The only exception are Lie groups,
that are allowed to have several components.

If M is a Riemannian manifold and p ∈ M , a geodesic symmetry at p is a map
defined in a neighborhood of p that fixes p and reverses any local geodesic through
p.

Remark 1.1.1. A geodesic symmetry need not be an isometry and need not be
defined on the whole of M .

Definition 1.1.2. The Riemannian manifold M is Riemannian locally symmetric
if for every p ∈ M , there exists a geodesic symmetry sp that additionally is an
isometry on its domain.

A Riemannian locally symmetric space is (globally) Riemannian symmetric if in
addition for every p ∈M the geodesic symmetry sp is defined on the whole of M .

Example 1.1.3. (1) As an exercise define the geodesic symmetry in the case
of Sn and of Euclidean n-space.

(2) Let Hn
K be hyperbolic n-space. We can identify2 the tangent space TxHn

K
at the point x ∈ Hn

K with x⊥ := {y ∈ Kn+1 : q(x, y) = 0} The Hermitian
form q has signature (n, 1) and Kn+1 = Kx ⊕ Kx⊥, so that the restriction

K-Hermitian form q defined by

q(x, y) := x1y1 + · · ·+ xnyn − xn+1yn+1 ,

(where conjugation is of course trivial in R). If PKn is the projective space PKn = (Kn+1\{0})/K∗,
the set

Hn
K := {x ∈ PKn : q(x, x) < 0} .

is called real, complex or quaternionic hyperbolic n-space Hn
K, according to whether K = R,C or

H. Its dimension is, accordingly, n, 2n or 4n.
2Consider the map F (x) := q(x, x) + 1. If x ∈ F−1(0), then ker dxF = Tx(F−1(0)), and

(dxF )(y) = d
dt |t=0F (x + ty) = 2q(x, y).
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of q to x⊥ is positive definite: it follows that <q(u, v) descends to an inner
product on TxHn

K that turns Hn
K into a Riemannian manifold.

If for example K = R, then geodesics in this model are the intersection
of the hyperboloid with planes through the origin. The geodesic symmetry
is defined at x by

sx(y) := −2xq(x, y)− y .
In fact, sx ∈ O(q,K), (sx)

2 = Id , sx(x) = x and sx preserves the Rie-
mannian metric: namely, if z ∈ Hn

K, then dzsx : TzHn
K → Tsx(z)Hn

K has the
property that

q(dzsx(v), dzsx(v)) = q(sx(v), sx(v)) = q(v, v) ,

where we have used that the differential of a linear map is the linear map
itself. If follows also that, if v is a tangent vector at x, then

sx(v) = 2vq(x, v)− v = −v .

If M is Riemannian symmetric, it is complete and the connected component of
its isometry group is small enough to be finite dimensional, but large enough to act
transitively. The stabilizer of a point is going to be a compact subgroup of Iso(M)◦.

More (and less well known) examples:

Example 1.1.4. (1) A compact semisimple Lie group can be turned into a
Riemannian symmetric space.

(2) Any compact orientable Riemann surface of genus g ≥ 2 is locally Rie-
mannian symmetric but not Riemannian symmetric. They are all quotients
H2

R/Γ, where Γ < Iso(H2
R)◦ is a discrete cocompact subgroup (isomorphic

to the fundamental group of the surface).
(3) Quotients of 2-dimensional real hyperbolic space by SL(2,Z) or by any finite

index subgroup are locally Riemannian symmetric with finite volume (but
not necesarily compact).

(4) Borel showed that any Riemannian space, whose isometry group is semisim-
ple, admits a quotient that is of finite volume and compact (using number
theoretical arguments).

In fact, developing the theory leads to the first fact that any symmetric space
is of the form Rm ×G/K, where Rn is a Euclidean space, G is a semisimple group
that has an involutive automorphism σ whose fixed point is essentially K (in fact,
(Gσ)◦ ⊂ K ⊂ Gσ).

1.1.2. Algebraic characterization of symmetric spaces. A symmetric space
can be characterized from a purely algebraic point of view as follows. Take a con-
nected Lie group and σ : G→ G an involutive automorphism σ2 = Id . A symmetric
space for G is a homogeneous space G/H such that H < Gσ is an open subgroup
(hence union of connected components). If the groupGσ of σ-fixed points is compact,
then Gσ can be equipped with a Riemannian metric by considering any Gσ-invariant



6 1. INTRODUCTION

inner product on the tangent space at eGσ (which is possible since Gσ is compact)
and smearing it around using the G-action. If (Gσ)◦ ≤ K ≤ Gσ, then G/K is a
Riemannian symmetric space.

Remark 1.1.5. Differentiation of σ gives a decomposition of g into g = h ⊕ m,
where h = Lie(H) is the eigenspace with eigenvalue +1 and m is the eigenspace with
eigenvalue −1. Then [h, h] = h, [h,m] ⊂ m and [m,m] ⊂ h. These three conditions
indeed are equivalent in turn to the existence of an involutive automorphism of G
with h as a +1 eigenspace and m as a −1 eigenspace.

1.1.3. Equivalence Between the two Characterizations. If M is Rie-
mannian symmetric, then M ∼= G/K, where G = Iso(M)◦ and K = StabG(p),
where p ∈ M is any point. Then K is compact and σ : G → G, defined by
σ(g) = spgsp is an involutive automorphism of G such that (Gσ)◦ ⊂ K ⊂ Gσ (and
is hence open).

To see the converse, that is that M = G/K is Riemannian symmetric, we need
to define sp : M → M , where p = hK ∈ M . Then sp(lK) = hσ(h−1l)K, where σ
is the involution of G fixing K. One can then see that sp(p) = p, sp ∈ Iso(M) and
dpsp : TpM → TpM is just dpsp = −Id .

1.1.4. Decomposition and Classification. In 1926 Cartan classified all sim-
ply connected Riemannian symmetric spaces. Using the de Rham decomposition,
one can see that any simply connected symmetric space can be written as a product
of M0 ×M+ ×M−, where

– M0 has zero curvature and is hence isometric to Rn;
– M+ has non-negative sectional curvature;
– M− has non-positive sectional curvature.

The simply connected symmetric spaces of non-negative curvature are those of
compact type, while the M− are of non-compact type. Both have semisimple isometry
group. The compact and non-compact symmetric spaces are moreover dual one
of the other (resembling the analogy between spherical geometry and hyperbolic
geometry, that can be, in fact, explained by this duality).

An important invariant of a symmetric space is its rank. This can be explained
from a Riemannian geometrical point of view as the maximal dimension of any
totally geodesic subspace of M (that is the maximal dimension of a subspace of the
tangent space to any point in which the curvature is zero). From the Lie theoretical
point of view the rank is given in terms of the dimension of a Cartan subalgebra,
that is a maximal abelian subalgebra that is diagonalizable.

If the rank is one, then the curvature is either negative or positive, and we have
the hyperbolic spaces defined before (in negative curvature) and sphere (in positive
curvature).

We will focus mostly on symmetric spaces of non-compact type (once we get
there!). In this case K < G is a maximal compact subgroup (and all maximal
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compact are conjugate) We will also see various decompositions, such as the Cartan
and the Iwasawa decomposition. If time permits, we will study also the geometry
at infinity of a symmetric space.

1.1.5. (Maximal) Prerequisites in Riemannian Geometry.

• Parallel transport, geodesic and the exponential map;
• Isometries of a Riemannian manifold as a metric space;
• de Rham decomposition;
• Levi-Civita connection;
• Curvatures (Riemann curvature tensor, sectional curvature);
• Jacobi fields.

1.1.6. Textbooks.

(1) A. Borel, [Bor98]
(2) M. Bridson and A. Haefliger, [BH99]
(3) M. do Carmo, [dC92]
(4) P. Eberlein, [Ebe96]
(5) S. Helgason, [Hel01]
(6) S. Kobayashi and K. Nomizu, [KN96]





CHAPTER 2

Generalities on Riemannian Globally Symmetric Spaces

2.1. Isometries and the Isometry Group

Definition 2.1.1. A map f : M → N between two Riemannian manifolds (M, g),
(N, h) is an isometry if it is a diffeomorphism and g = f ∗h, that is, if dpf : TpM →
Tf(p)N is the differential, then

hf(p)(dpf(u), dpf(v)) = gp(u, v) ,

for all u, v ∈ TpM .

Note that an isometry maps geodesics into geodesics and hence preserves dis-
tances. The converse is also true, namely:

Theorem 2.1.2 ([Hel01, Theorem I.11.1]). Any distance preserving self-map of the
metric space (M, g) is an isometry.

We also have the following very useful rigidity result:

Lemma 2.1.3 ([Hel01, Lemma I.11.2]). Let fi : M → N , i = 1, 2, be two isometries
of the connected Riemannian manifolds M and N . Suppose there exists a point
p ∈M such that f1(p) = f2(p) and dpf1 = dpf2. Then f1 = f2.

Recall: The Riemannian exponential map at p ∈ M is defined by Expp(Xp) :=
γXp(1) in a sufficiently small neighborhood, where γXp is the unique geodesic γ :
(−2, 2) → M such that γ(0) = p and γ̇Xp(0) = Xp. A neighborhood of p ∈ M is
called a normal neighborhood of p if U is the diffeomorphic image of a star shaped
neighborhood on 0 ∈ TpM under the Riemannian exponential map.

Proof of Lemma 2.1.3 . Let U be a normal neighborhood of p ∈ M such
that the fi|U are diffeomorphisms. If f := f−1

2 ◦ f1 : U → U , then f(p) = p and
dpf = Id and hence f(y) = y for all y ∈ U . Since M is connected, any other point
in M can be joined to p by overlapping normal neighborhoods. �

The isometries of a Riemannian manifold (M, g) form a group Iso(M) under com-
position, that can be topologized with the compact-open topology (i.e. the topol-
ogy generated by the subbasis {S(C,U) : C ⊂M is compact and U ⊂M is open},
where S(C,U) := {f ∈ Iso(M) : f(C) ⊂ U}). Since M is a metric space, the
compact-open topology is equivalent to the topology of the uniform convergence on
compact sets [Hel01]. Since M is second countable and locally compact, Iso(M)
is second countable as well (see [Hel01, Lemma IV.2.1]). Notice moreover that, by

9



10 2. GENERALITIES ON RIEMANNIAN GLOBALLY SYMMETRIC SPACES

definition, Iso(M) acts effectively on M , that is there is no non-trivial subgroup of
Iso(M) that leaves M invariant. In addition we have the following easy lemmas,
that can be proven with straightforward verifications (as an exercise!)

Lemma 2.1.4 ([Hel01, Lemma IV.2.3]). If a sequence of isometries (fn)n ∈ Iso(M)
converges pointwise on a set S ⊂ M , then it converges pointwise on the closure S
of S.

Lemma 2.1.5 ([Hel01, Lemma IV.2.4]). Let (fn)n ∈ Iso(M) be a sequence of isome-
tries that converges pointwise on M to a map f : M → M . Then the convergence
is uniform on compact sets and f ∈ Iso(M).

Using the above two lemmas, it is easy to prove the following:

Theorem 2.1.6 ([Hel01, Theorem IV.2.2]). Let (fn)n ∈ Iso(M) be a sequence
that converges pointwise at one point p0 ∈ M . Then there exists a subsequence
(fnk) ∈ Iso(M) and f ∈ Iso(M), such that fnk → f uniformly on compact sets.

The above Theorem 2.1.6 is one of the (at least) two ways to prove the following
result:

Theorem 2.1.7 ([Hel01, Theorem IV.2.5]). Let M be a Riemannian manifold.
Then Iso(M) is a locally compact group with the compact open topology and a
topological group of transformation of M (i.e. it acts continuously on M). Moreover
the stabilizer K of a point p ∈M is compact.

Proof. The first assertions are standard verifications and are left as an exercise.
To see the compactness of the stabilizers, let U ⊂ M a relatively compact neigh-
borhood of p. By Theorem 2.1.6 the set S({p}, U) has relatively compact closure.
Since K ⊂ S({p}, U) and K is closed, then K is compact. �

The same assertion could have been obtained by using directly the Theorem of
Ascoli-Arzelà (Theorem A.1.2).

We remark that Iso(M) is actually a finite dimensional Lie group, [MS39]. We
will give later the (sketch of the) proof of this fact in the spacial case in which M is
a Riemannian symmetric space.

2.2. Geodesic Symmetries

Definition 2.2.1. Let M be a connected Riemannian manifold.

(1) M is Riemannian locally symmetric if for each p ∈M there exists a normal
neighborhood U pf p and an isometry sp on U that is:
(a) involutive (i.e. (sp)

2 = Id), and
(b) p is an isolated fixed point (i.e. p is the only fixed point of sp in U).

(2) M is Riemannian (globally) symmetric if for each p ∈M , sp can be extended
to an isometry defined on M .
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Here is the relation between Riemannian locally symmetric and Riemannian
(globally) symmetric spaces.

Theorem 2.2.2 ([Hel01, Theorem IV.5.6]). A complete simply connected Rie-
mannian locally symmetric spaces is Riemannian (globally) symmetric.

We postpone the proof to later, after we will have proven that Riemannian sym-
metric spaces are analytic manifolds. This theorem implies in particular that the
Riemannian universal cover of a Riemannian locally symmetric space is Riemann-
ian globally symmetric. Conversely, every Riemannian locally symmetric space is a
quotient of a Riemannian globally symmetric space by a discrete torsion-free group
of isometries isomorphic to the fundamental group. However the converse of Theo-
rem 2.2.2 does not hold, as for example S1 is a globally symmetric space that is not
simply connected.

In this course we will only be concerned with Riemannian globally symmetric
spaces, so the terminology ”Riemannian symmetric space” is from now on intended
to mean Riemannian ”globally symmetric space”.

Since sp is an isometry and hence it preserves geodesics (and whatever is defined
in terms of geodesics), we have that the diagram

TpM
dpsp //

Exp
��

TpM

Exp
��

M
sp // M .

(2.2.1)

commutes. This will be used for example in the next lemma, which gives us an
explicit expression for an involutive isometry.

Lemma 2.2.3. If M is a Riemannian manifold, p ∈M and sp an involutive isometry
of M , then dpsp = −Id and sp(ExpXp) = Exp(−Xp) for all Xp ∈ Tp(M) for which
Exp is defined.

Proof. Since s2
p is the identity, then (dpsp)

2 = Id , where (dpsp)
2 : Tp(M) →

Tp(M). Hence dpsp has eigenvalues1 +1 or −1. If +1 were to be an eigenvalue, then
there would be Xp 6= 0 such that dpspXp = Xp. By (2.2.1), for small enough t, we
would have that sp(Exp(tXp)) = Exp(dpsp(tXp)) = Exp(tXp). Thus the geodesic
through p with initial vector Xp would be left fixed by sp, contradicting the fact
that p is an isolated fixed point of sp.

Hence −1 must be the only eigenvalue and dpsp = −Id . Again by the commuta-
tivity of (2.2.1), we have that sp(Exp(Xp)) = Exp(dpsp(Xp)) = Exp(−Xp), so that
sp reverses the geodesic through p with a given tangent vector. �

The following corollary follows immediately from Lemma 2.2.3 and Lemma 2.1.3;

1Let V be a real vector space. Then any map A ∈ End(V ) such that A2 = Id is diagonalizable.
In fact, if (·, ·) is any inner product, then A is in the orthogonal group of the inner product
< u, v >:= (u, v) + (Au,Av) and hence is diagonalizable.



12 2. GENERALITIES ON RIEMANNIAN GLOBALLY SYMMETRIC SPACES

Corollary 2.2.4. If M is a connected Riemannian manifold and p ∈ M , there is
at most one involutive isometry sp with p as isolated fixed point.

The following lemma will allow us to draw the first very interesting consequence
of the existence of geodesic symmetries.

Lemma 2.2.5. Let M be a Riemannian symmetric space. Then the map M →
Iso(M) defined by p 7→ sp is continuous.

Proof. We need to show that if (pn)n ∈ M is a sequence such that pn → p,
then spn → sp in the compact-open topology (that is, uniformly on compact sets).
Because of Lemma 2.1.5, it is enough to show that spn → sp pointwise. Let S ⊂M be
the set of points x ∈M for which spn(x)→ sp(x). The set S is obviously not empty
because the point p ∈ S (since d(p, spn(p)) = 2d(p, pn) → 0 as n → ∞). By the
smooth dependence on the initial conditions of solutions of differential equations (see
Lemma A.2.1) the set S is open and by Lemma 2.1.4 S is closed. Hence S = M . �

Proposition 2.2.6. If M is a Riemannian symmetric space, then it is complete (as
a metric space). Moreover the connected component Iso(M)◦ of the isometry group
Iso(M) acts transitively on M .

Proof. We will show that the geodesics are defined on R. The first claim will
then follow from the Theorem of Hopf–Rinow (Theorem A.2.2).

Let γ be a geodesic in M and assume that γ is defined on some interval [a, b)
with a < b. We will show that it can be extended to b. Take ε = b−a

4
and consider

the geodesic symmetry sp0 at p0 := γ(b− ε).

gbem

ga

.

gb32

gadm gadp

gb

It takes the geodesic γ(t) to another geodesic through p0 whose tangent vector
at p0 is −γ̇(b − ε) and whose length is the same as that of γ(t). Since the tangent
vectors at the point p0 are the same (up to a scalar), then the new geodesic coincides
with γ for all a+b

2
< t < b and thus extends it to the interval [a, 3

2
b] ) [a, b].

By the Theorem of Hopf–Rinow, given any two points p, q ∈M with t := d(p, q),
there exists a geodesic γ : R → M such that γ(0) = p and γ(t) = q. Then
q = sγ(t/2)(p), that is Iso(M) acts transitively.
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By Lemma 2.2.5, the isometries sp are in the same connected component for
all p ∈ M , but this connected component is not necessarily the one that contains
the identity. On the other hand, the set {sp ◦ sp′} is contained in Iso(M)◦, since
(sp)

2 = Id and the map p 7→ sp is continuous, which allows us to deform s2
p to

{sp ◦ sp′} by any path from p to p′. Since q = sγ(t/2) ◦ sp(p), we have shown that
Iso(M)◦ acts transitively on M . �

A classical theorem of Myers and Steenrod [MS39] assert that the isometry
group of a Riemannian manifold is a Lie group. The idea is to consider orbits of
points and parametrize in this way Iso(M). We sketch the proof in the special case
of our interest.

Theorem 2.2.7. Let M be a Riemannian globally symmetric space. Then G :=
Iso(M) has a Lie group structure compatible with the compact open topology and
it acts smoothly on M . Moreover M is diffeomorphic to G/K, where K = StabG(p0)
(for p0 ∈M a base point) is compact and contains no non-trivial normal subgroups
of G.

Sketch of the proof. The map K → O(Tp0M, g), defined by k 7→ dp0k, is a
homeomorphism onto its image. Hence K can be identified with a closed subgroup
of O(Tp0M, g), from which it inherits a unique differentiable structure compatible
with the topology, which makes it a Lie group.

Let π : G → M be the natural projection, π(g) := g · p0. We will construct
a continuous local section of π, that is a map φ : Br(p0) → G, where Br(p0)
is a normal ball in M , such that π ◦ φ = Id (see Definition A.1.3). From this
it will follow that π|B is a homeomorphism, where B := φ(Br(p0)), and hence
π−1(Br(p0)) = BK = {bk : b ∈ B, k ∈ K} is an open set in G homeomorphic to
B ×K. The differentiable structure will hence be given to G by using translates of
open set BU , where U ⊂ K is open and one can check that all the needed properties
hold.

In order to construct the section φ, let γ(t) be a geodesic in Br(p0) such that
γ(0) = p0. As seen already in the proof of Proposition 2.2.6, for every t, the isometry
sγ(t/2) ◦ sp0 maps p0 into γ(t). Define φ(γ(t)) := sγ(t/2) ◦ sp0 . The map φ has the
desired properties, since it is obviously injective for small enough t and continuous
(Lemma 2.2.5).

If K were to contain a subgroup that is normal in G, then this subgroup would
act trivially on M = G/K, which is impossible. �

Remark 2.2.8. The smooth structure on a Lie group is in fact analytic. This follows
for example from the fact that the exponential map on an arbitrary Riemannian
manifold is analytic and hence so are the coordinate systems it defines. In particular,
the same proof that shows that there is only one smooth structure on a Lie group
compatible with the topology with respect to which it is a Lie group, shows that
there is only one analytic structure. A consequence of the existence of the analytic



14 2. GENERALITIES ON RIEMANNIAN GLOBALLY SYMMETRIC SPACES

structure is that all above statements are analytic and not only smooth. This is
useful to prove Theorem 2.2.2, whose proof we sketch here.

Recall that the difference between a locally symmetric space and a globally
symmetric space is whether or not the geodesic symmetries are globally defined.
The purpose of the following lemmas will hence to provide such an extension in the
case of a simply connected locally symmetric space. The first one will use that if
two analytic maps defined on an open set V coincide on an open subset U ⊂ V ,
f1|U = f2|U , then they coincide on the larger open set, f1 ≡ f2 on V . The next
two lemmas will allow to extend an isometry along a path and to show that the
extension does not depends on the choice of a curve in a given homotopy class. One
can then wrap all of this up to prove Theorem 2.2.2.

Lemma 2.2.9. Let M and N be complete Riemannian real analytic manifolds and
let Bρ(p) be a normal ball around p ∈M . Let f : Br(p)→ Br(f(p)) be an isometry,
with r < ρ and Br(f(p)) a normal neighborhood of f(p). Then f is analytic and it
extends to an isometry f : Bρ(p)→ Bρ(f(p)).

Proof. By the commutativity of the diagram

TpM
dpf //

Expp
��

TqN

Expq
��

Br(p)
f // N

(2.2.2)

it follows that f = Expq ◦dpf ◦Exp−1
p is analytic on Br(p) and hence can be extended

to f ′ : Bρ(p)→ N . We still need to verify that f ′ is an isometry. To this purpose, let
X, Y be analytic vector fields on Bρ(p). By assumption, if g, h are the Riemannian
metrics on M,N respectively, we have that on f ∗h = g on Br(p), that is

hq(dpf
′Xp, dpf

′Yp) = g(Xp, Xp) .

This equality holds by assumption on Br(p). By analyticity, the equality holds on
Bρ(p) and hence f ′ is an isometry on Bρ(p). �

Lemma 2.2.10 ([Hel01, Proposition I.11.3]). Let M and N be complete real analytic
Riemannian manifolds. Let p ∈M and f : U → N be an isometry, where U ⊂M is
a normal neighborhood of p. Let η be any curve in M starting at p. Then f can be
continued along η, i.e. for each t ∈ [0, 1] there exists a neighborhood Ut of η(t) and
an isometry ft : Ut → N , such that:

(1) U0 = U , f0 = f , and
(2) there exists ε > 0, such that for |t − s| < ε, Ut ∩ Us 6= ∅ and ft = fs on

Ut ∩ Us.

Proof. Let I := {t ∈ [0, 1] : f can be extended near η(t)}. Then I is an open
interval and it is not empty since 0 ∈ I. We will show that t := sup I ∈ I, so that
I = [0, 1].
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Let q := limt→t ft(η(t)). This exists because N is complete. Choose ρ > 0 so
that B3ρ(η(t)) and B3ρ(q) are normal balls around η(t) and q respectively. Let t′ < t
such that

η(t′) ∈ Bρ(η(t)) and ft(η(t′)) ∈ Bρ(q)

for all t′ ≤ t < t.

γ

q

3ρ

ρ

ft′ (γ(t′))

2ρ

Then B2ρ(η(t′)) and B2ρ(ft(η(t′))) are normal balls around η(t′) and ft(η(t′)) re-
spectively and, by the first part of the argument, ft′ can be extended. Since
η(t) ∈ B2ρ(η(t′)), then t ∈ I. �

Remark 2.2.11. Since ft(η(t)) and dη(t)ft vary continuously with t and N is Haus-
dorff, the continuation is unique. In fact, let f ′t be another continuation of f along
η(t) for t ∈ [0, 1]. Then the set of t ∈ [0, 1] for which ft(η(t)) = f ′t(η(t)) and
dη(t)ft = dη(t)f

′
t is an open and closed subset of [0, 1] that contains 0 and is hence

the whole interval [0, 1].

Lemma 2.2.12. Let M and N be complete Riemannian locally symmetric spaces.
Let p ∈M and f : U → N be a isometry, where U ⊂M be a normal neighborhood
of p. Let η be any curve in M starting at p and δ another curve, homotopic to η
with fixed endpoints. If f η and f δ are the continuation of f along η and δ, then f η

and f δ agree in a neighborhood of η(1) = δ(1).

Proof. Let H : [0, 1] × [0, 1] → M be a homotopy between η and δ, with
H(t, 0) = η(t), H(t, 1) = δ(t), H(0, s) = p, H(1, s) = η(1) = δ(1).

Call f s the continuation of f along the curveHs : t 7→ H(t, s) (see Lemma 2.2.10).
Define I := {s ∈ [0, 1] : for all s′ ≤ s, f s

′
(1) = f 0(1) = f 1(1) near η(1) = δ(1)}.

Then I is open and not empty (since it contains 0). We will show that ς := sup I ∈ I,
thus showing that I ⊂ [0, 1] is open, closed and not empty (and hence I = [0, 1]).

Since the maps t 7→ Hς(t) and t 7→ f ς(Hς(t)) are continuous, there exists ρ > 0
such that B2ρ(Hς(t)) and B2ρ(f

ς(Hς(t))) are normal balls for all 0 ≤ t ≤ 1. By
definition of ς, then there exists ε > 0 such that d(Hς(t), Hs(t)) ≤ ρ for all t and
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|ς − s| < ε. Then f ς is a continuation of f along Hs and therefore, by uniqueness,
f ς = f s near η(1) = δ(1). This concludes the proof that ς ∈ I. �

Proof of Theorem 2.2.2. Let p ∈ M and let Br(p) be a normal ball such
that the geodesic symmetry sp is an isometry of Br(p) into itself. We are going to
define a map Φ : M → M that is an isometry, coincides with sp on Br(p) and is
involutive with isolated fixed points, thus proving that M is Riemannian globally
symmetric. Let q ∈ M be any point, and let γ : [0, 1] → M be a continuous
path such that γ(0) = p and γ(1) = q. Let us continue sp along γ and let us
define Φ(q) := (sp)1(1) (where, in the notation of Lemma 2.2.10, (sp)t denotes the
extension of sp in a neighborhood of γ(t)). By Lemma 2.2.12, since M is simply
connected, Φ(q) does not depend on the choice of the path γ and coincides with
(sp)1 in a neighborhood of γ(1). Hence Φ : M → M is an differentiable map whose
differential preserves the Riemannian metric. Since it reverses geodesics at p, then
Φ2 = Id . It follows that Φ is an isometry. �

2.3. Transvections and Parallel Transport

We saw in the proof of Proposition 2.2.6 that the set of geodesic symmetries is
transitive on a Riemannian globally symmetric space. In particular, we saw that
if p, q ∈ M and γ : R → M is geodesic such that γ(0) = p and γ(t) = q, then
q = sγ(t/2) ◦ sγ(0)(p).

Proposition 2.3.1. Let M be a Riemannian globally symmetric space, γ : R→M
a geodesic and Tt := sγ(t/2) ◦ sγ(0). Then for every c ∈ R,

Tt(γ(c)) = γ(t+ c) .

Moreover dγ(0)Tt : Tγ(0)M → Tγ(t)M is the parallel translation along the geodesic γ,
that is, if Xγ(0) ∈ Tγ(0)M , then Xγ(t) := dγ(0)TtXγ(0) is the associated parallel vector
field along γ.

The first assertion of the above proposition explains the reason for the following
terminology.

Definition 2.3.2. The isometries Tt := sγ(t/2) ◦ sγ(0) are called transvections.

Proof of Proposition 2.3.1. Since geodesic symmetries map geodesic onto
themselves changing the orientation, the map Tt must map the geodesic γ onto itself
and preserve its orientation. If we assume that γ is a unit speed parametrization,
it follows that the restriction to the geodesic γ(t) has the form Tt(γ(c)) = γ(c +
constant). Since Tt(γ(0)) = γ(t), then Tt(γ(c)) = γ(t+ c).

We now consider the action of dγ(0)Tt on Tγ(0)M . Let v := Xγ(0) ∈ Tγ(0)M and
let Xv be the unique parallel vector field such that (Xv)γ(0) = Xγ(0). We want to
show that (Xv)γ(t) = (dγ(0)Tt)Xγ(0)for all t ∈ R.
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Since for every t sγ(t′) is an isometry and Xv is parallel along γ, then by
Lemma A.2.9 ((sγ(t′))∗)X

v is a vector field parallel along sγ(t′) ◦ γ = γ. At the
point γ(t′) the value of this new parallel vector field is

(sγ(t′))∗(X
v)γ(t′) = −(Xv)γ(t′) .

But −Xv is also parallel along γ with value −(Xv)γ(t′) at γ(t′). By uniqueness of
parallel vector fields with prescribed initial conditions we have

(sγ(t′))∗X
v = −Xv .(2.3.1)

Observe now that

sγ(t′)(γ(t)) = γ(2t′ − t) ,
so that (2.3.1) can be written as

(dγ(t)sγ(t′))(X
v)γ(t) = (−Xv)γ(2t′−t) .(2.3.2)

At t′ = 0 (2.3.2) becomes

(dγ(t)sγ(0))(X
v)γ(t) = (−Xv)γ(−t) ,(2.3.3)

while at t′ = c/2 with −t replacing t, (2.3.2) becomes

(dγ(−t)sγ(c/2))(X
v)γ(−t) = (−Xv)γ(c+t) ,(2.3.4)

Now

dγ(t)Tc(Xv)γ(t) =dγ(t)(sγ(c/2) ◦ sγ(0))(X
v)γ(t)

=(dγ(−t)sγ(c/2))(dγ(t)sγ(0))(X
v)γ(t)

(2.3.3)
= (dγ(−t)sγ(c/2))(−(Xv)γ(−t))

(2.3.4)
= (Xv)γ(c+t) .

By setting t = 0 and c = t, we obtain the desired equality. �

Remark 2.3.3. The same argument as above shows that

sγ(t1) ◦ sγ(t2)(γ(t)) = γ(t+ 2(t1 − t2))

and dγ(t)(sγ(t1) ◦ sγ(t2)) is the parallel transport along γ(t).

2.4. Algebraic Point of View

We have seen that if M is Riemannian (globally) symmetric, then M is diffeo-
morphic to G/K, where G = Iso(M)◦ and K is the stabilizer of a point in M . In
this section we will deal with the natural question regarding the converse statement:
which homogeneous spaces are Riemannian symmetric spaces?

Let G be a Lie group with Lie algebra g. The Lie group exponential map
exp : g → G is defined as expg(X) := ϕx(1), where ϕX : R → G is the unique one-
parameter subgroup (that is a homomorphism from R into G such that ϕ̇X(0) = X.
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If h : G→ G is any homomorphism, then by naturality of the Lie group exponential
map exp : g→ G, the following diagram commutes

g
deh //

exp

��

g

exp

��
G

h
// G ,

(2.4.1)
that is, for all g ∈ G and X ∈ g,

exp dehX = h(expX) .

A particularly important homomorphism is the conjugation cg : G→ G, defined
by cg(h) := ghg−1. This is a Lie group isomorphism whose differential at the identity
e ∈ G, AdG(g) := decg : g→ g is a Lie algebra automorphism. In particular

AdG(g)([X, Y ]) = [AdG(g)(X),AdG(g)(Y )] ,

for all X, Y ∈ g and g ∈ G. The map AdG : G → GL(g) is an analytic group
homomorphism called the adjoint representation of G. Its derivative at the identity
deAdG : g → gl(g) is the adjoint representation of g and is denoted by adg :=
deAdG.So for example (2.4.1) applied to h = cg yields

exp AdG(g)X = g expXg−1 .

If σ ∈ Aut(G), we set Gσ := {g ∈ G : σ(g) = g}.

Definition 2.4.1. Let G be a connected Lie group. An automorphism σ ∈ Aut(G)
is involutive if σ2 = Id .

Definition 2.4.2. Let G be a connected Lie group and K ≤ G a closed subgroup.
The pair (G,K) is called a Riemannian symmetric pair if:

(1) AdG(K) is a compact subgroup of GL(g), and
(2) there is an analytic involutive automorphism σ of G such that

(Gσ)◦ ⊂ K ⊂ Gσ .

The prominent example of Riemannian symmetric pair is given by the next
result.

Proposition 2.4.3. Let M be a Riemannian symmetric space and G := Iso(M)◦.
Fix a base point p ∈ M and let K be the isotropy subgroup of G at p. Then the
map σ : G → G defined by g 7→ spgsp is an involutive Lie group automorphism of
G such that (Gσ)◦ ⊂ K ⊂ Gσ.

It makes sense to give then the following:

Definition 2.4.4. LetM be a Riemannian (globally) symmetric space, G = Iso(M)◦

and K ≤ G the isotropy subgroup of a point p ∈ M . Then (G,K) is called Rie-
mannian symmetric pair associated to (M, p).

Notice that one cannot say anything more precise of the relation between K and
Gσ, as the following examples show:
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Example 2.4.5. (1) Let M = S2, p = e3 and G = Iso(M) = SO(3,R). We can
write sp and g ∈ SO(3,R) in block form as

sp =

(
Id2 0
0 1

)
and g =

(
A b
c d

)
,

so that

σ(g) =

(
Id2 0
0 1

)(
A b
c d

)(
Id2 0
0 1

)
=

(
A −b
−c d

)
and hence

Gσ = {g ∈ SO(3,R) : g =

(
A 0
0 d

)
with A ∈ O(2,R), d = ±1, (det A)d = 1}

has two connected components. In this case we have also that K is con-
nected since S2 is simply connected2, so that (Gσ)◦ = K ( Gσ and

K = {g ∈ SO(3,R) : g =

(
A 0
0 1

)
with A ∈ SO(2,R)} .

(2) If M = P(R3) = S2/{±Id}, then p = [e3], G = Iso(M)◦ = Iso(M) =
O(3,R)/± Id and (Gσ)◦ = K = Gσ.

Proof of Proposition 2.4.3. First we verify that g 7→ spgsp is involutive.
In fact, since s2

p is the identity,

σ2(g) = σ(σ(g)) = σ(spgsp) = sp(spgsp)sp = s2
pgs

2
p = g .

We verify now that K ⊂ Gσ, that is that for every k ∈ K, σ(k) = spksp = k. To
see this observe first of all that σ(k)(p) = (spksp)(p) = sp(k(sp(p))) = sp(k(p)) =
sp(p) = p. Moreover, as dpσ(k) : TpM → TpM and dpsp = −Id , we have that
dpσ(k) = dp(spksp) = dpsp ◦ dpk ◦ dpsp = dpk, By Lemma 2.1.3, σ(k) = k, that is
K ⊂ Gσ.

Conversely, to show that (Gσ)◦ ⊂ K, it is enough to see that K contains a
neighborhood of the identity in Gσ. Let V ⊂ M be an open neighborhood of p: by
continuity, there exists an open neighborhood U ⊂ Gσ of e such that g(p) ∈ V for
all g ∈ U . But if g ∈ U ⊂ Gσ, then spgsp = g, so that g(p) ∈ V is a fixed point of
sp, spg(p) = gsp(p) = g(p). Since sp has only isolated fixed points, we could have
chosen V in such a way that p is the only fixed point of sp in M , which would imply
that g(p) = p. Thus U ⊂ K. �

The following theorem answers in particular the question at the beginning of
§ 2.4.

2If G is a connected topological group, H ≤ G a closed subgroup such that G/H is simply
connected, then H is connected. In fact, let H◦ be the connected component of the identity of H.
Then G/H◦ → G/H is a covering map. Moreover, since G is connected, then G/H is connected.
Since G/H is simply connected, the covering map must be the identity.
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Theorem 2.4.6. If (G,K) is a Riemannian symmetric pair and σ is an involutive
automorphism of G such that (Gσ)◦ ⊂ K ⊂ Gσ, then G/K is a globally symmetric
space with respect to any G-invariant Riemannian metric. If π : G→ G/K denotes
the natural projection and sp the geodesic symmetry at p = π(K) = eK ∈ G/K,
then

sp ◦ π = π ◦ σ .

In addition the geodesic symmetry sp is independent of the choice of the G-invariant
metric for any p ∈ G/K.

We start the proof of Theorem 2.4.6 with few lemmas that it is good to empha-
size.

Lemma 2.4.7. Let (G,K) be a Riemannian symmetric pair with an involutive au-
tomorphism σ, and let g and k denote the Lie algebra of G and K respectively.
Then

(1) k = {X ∈ g : deσX = X}, and
(2) if p := {X ∈ g : deσX = −X}, then g = k⊕ p.

Proof. We verify first that k is the set of fixed points of deσ. By definition of
symmetric pair dim(Gσ)◦ = dimK = dim(Gσ)◦ so that, if k is the Lie algebra of K,

k = Lie(Gσ)

={X : exp tX ∈ Gσ for all t ∈ R}
={X : σ(exp tX) = exp tX for all t ∈ R}

(2.4.1)
= {X : deσX = X} .

To see the second assertion we write X = 1
2
(X + deσX) + 1

2
(X − deσX). Since

(deσ)2 = Id , then 1
2
(X + deσX) ∈ k and 1

2
(X − deσX) ∈ p. �

Lemma 2.4.8. Let (G,K) be a Riemannian symmetric pair with an involutive au-
tomorphism σ, and let p := {X ∈ g : deσX = −X}. Then p is AdG(K)-invariant.

Proof. We need to show that for all X ∈ p and all k ∈ K

deσ(AdG(k)(X)) = −AdG(k)(X) .

To this purpose, observe first of all that

(1) from the naturality of the exponential map, exp ◦deσ(tX) = σ(exp(tX)) for
all X ∈ g. Inn particular if X ∈ p, then

exp(−tX) = σ(exp(tX)) .(2.4.2)

(2) Moreover, again for the naturality of the exponential map and the definition
of AdG, we have that for all X ∈ g

exp(AdG(k)(tX) = ck(exp(tX)) = k(exp(tX))k−1 .
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But if X ∈ p, using (2.4.2) and the fact that K ⊂ Gσ, we have that

exp(AdG(k)(tX) =ck(exp(tX)) = k(exp(tX))k−1

=kσ(exp(−tX))k−1 = σ(k exp(−tX)k−1) .
(2.4.3)

(3) Finally, from the commutativity of the diagram

g
AdG(k)

//

exp

��

g
deσ //

��

g

exp

��
G ck

// G σ
// G ,

(2.4.4)

we have that

exp deσAdG(k)(tX) = σ(ck exp(tX)) = σ(k exp(tX)k−1) .

By equating the right hand side of this formula and of (2.4.3), replacing tX
with −tX, we obtain

exp(AdG(k)(−tX) = exp deσAdG(k)(tX)

Since exp is locally injective, we deduce that AdG(k)(−tX) = deσAdG(k)(tX),
for all X ∈ p, k ∈ K.

�

Proof of Theorem 2.4.6. If π : G → G/K is the projection and we set
π(e) =: p ∈ G/K, then the differential deπ : g → Tp(G/K) is surjective and has
kernel ker deπ = k, so that there is an isomorphism of R-vector spaces p ∼= g/k ∼=
Tp(G/K). We will see now that deπ intertwines the action of K via AdG on p with
the action on Tp(G/K) obtained by differentiating the left translation by k. In fact,
by the commutativity of the left diagram in (2.4.4), and applying π on both sides,
we have that

π(exp(AdG(k)(tX))) = π(k exp(tX)k−1) = kπ(exp(tX)k−1) = kπ(exp(tX)) .

By taking the derivative at the origin t = 0, we obtain the desired intertwining of
the actions

p

deπ
��

AdG(k)
// p

deπ
��

To(G/K)
dek
// To(G/K)

that is deπ ◦ AdG(k)(X) = dpk ◦ deπ(X) for all X ∈ p and all k ∈ K.
Since AdG(K) is a compact subgroup of GL(g), there exists a positive definite

inner product B on p and, actually, any positive definite inner product can be made
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AdG(K) invariant. In fact, if B′ : p× p→ R be a positive definite inner product on
p and µ is the Haar measure on AdG(K), then

B(X, Y ) :=

∫
AdG(K)

B′(g∗X, g∗Y ) dµ(k)

is obviously AdG(K)-invariant and can be proven to be non-zero.
We set now Qp := B ◦ (deπ

−1×deπ−1) : Tp(G/K)×Tp(G/K)→ R, which is now
a K-invariant inner product on Tp(G/K) and we extend it to TrG/K by invariance.
Namely, if Xr, Yr ∈ Tr(G/K), then

Qr(Xr, Xr) := Qp(dpg
−1Xr, dpg

−1Yr) ,(2.4.5)

where g(p) = q. Notice that this is well defined since Qp is K-invariant. In fact, if
gp = hp = q, then h−1g ∈ K, so that

Qp(dpg
−1Xr, dpg

−1Yr) = Qp(dp(h
−1g))dpg

−1Xr, dp(h
−1g))dpg

−1Yr)

= Qp(dpg
−1Xr, dpg

−1Yr) .

This gives a G-invariant Riemannian metric on G/K and any other G-invariant
Riemannian metric gives an inner product on p.

We need to define now the geodesic symmetries. We start with sp. Once we’ll
have defined this, if g(p) = q as above, then sp = g ◦ sp ◦ g−1 will give the geodesic
symmetry at any other point.

We define sp as a map that satisfies the relation

sp ◦ π = π ◦ σ(2.4.6)

that is

sp = π ◦ σ ◦ π−1 .

It is easy to see that sp is well-defined. In fact, since K ⊂ Gσ, then

sp(x) = π(σ(π−1(x))) = π(σ(xK)) = π(σ(x)σ(K)) = π(σ(x)) .

We see now that s2
p = Id . In fact, By applying once more sp on the left of (2.4.6),

we obtain

sp ◦ (sp ◦ π) = sp ◦ (π ◦ σ) = (sp ◦ π) ◦ σ = (π ◦ σ) ◦ σ = π ◦ (σ)2 = π ,

so that (sp)
2 = Id . The commutativity of the diagram

G
σ //

π
��

G

π
��

G/K sp
// G/K



2.4. ALGEBRAIC POINT OF VIEW 23

implies that also

p
deσ //

deπ
��

p

deπ
��

Tp(G/K)
dpsp

// Tp(G/K) ,

commutes, so that if X ∈ p,

dpsp(deπ(X)) = deπ(deσ(X)) = −deπ(X) ,

that is dpsp = −Id . We will use this to verify that sp is an isometry. Before doing
this, we have however to gather some more information. Namely, from sp◦π = π◦σ,
we obtain that for x ∈ G

sp ◦ g(xK) = sp ◦ π(gx) = π ◦ σ(gx)

= σ(gx)K = σ(g)σ(x)K

= σ(g)(π ◦ σ)(x)

= σ(g)(sp ◦ π)(x)

= (σ(g) ◦ sp)(xK)

= σ(g) ◦ sp(xK) ,

that is

sp ◦ g = σ(g) ◦ sp .(2.4.7)

In particular, since sp(p) = p and g(p) = q, it follows that sp(q) = σ(g)sp(p) =
σ(g)(p). Finally, we want to show that sp is an isometry, that is that

Qsp(x)((dxsp)Xx, (dxsp)Yx) = Qp(Xp, Yp) .

To this purpose we will use that if r = gp, then

sp(r) = sp(gp) = σ(g)(p) .

So, let X, Y be left invariant vector field on G/K, (dpg)Xp = Xr and (dpg)Yp = Yr.
Then

Qsp(r)((drsp)Xr, (drsp)Yr)

= Qsp(gp)((dgpsp)(dpg)Xp, (dgpsp)(dpg)Yp)

= Qσ(g)(p)((dp(sp ◦ g)Xp, (dp(sp ◦ g)Yp)

= Qσ(g)(p)((dp(σ(g) ◦ sp)Xp, (dp(σ(g) ◦ sp)Yp)
= Qσ(g)(p)(dpσ(g) dpspXp︸ ︷︷ ︸

=−Xp

, dpσ(g) dpspYp︸ ︷︷ ︸
=−Yp

)

= Qσ(g)(p)(dpσ(g)Xp, dpσ(g)Yp)

= Qp(Xp, Yp)

= Qr(Xr, Yr) ,



24 2. GENERALITIES ON RIEMANNIAN GLOBALLY SYMMETRIC SPACES

where in the first equality we used that the vector fields are invariant, in the second
the chain rule, in the third (2.4.7), in the next the fact that dpsp = −Id , and in the
last ones the definition of Q in (2.4.5) . Hence sp is an isometry. �

The following proposition shows that, under very general conditions, the auto-
morphism σ is completely determined by its set of fixed points Gσ. This will have
important consequences, as the Definition 2.4.11 shows.

Proposition 2.4.9. Let (G,K) be a Riemannian symmetric pair, k the Lie algebra
of K and z the Lie algebra of the center of G. If k∩z = {0}, then there exists exactly
one analytic involutive automorphism σ ∈ Aut(G), such that (Gσ)◦ ⊂ K ⊂ Gσ.

Remark 2.4.10. Here are two cases in which the condition that k ∩ z = {0} is
verified.

(1) If g is semisimple then z = {0}, hence k ∩ z = {0}.
(2) If (G,K) is a Riemannian symmetric pair associated to a globally symmetric

space, then we proved in Theorem 2.2.7 that K contains no non-trivial
subgroups normal in K, so that the Lie algebra of k does not contain a
subalgebra that is an ideal in g. Hence the involutive automorphism in
Proposition 2.4.9 is exactly the one the Riemannian symmetric pair (G,K)
came equipped with.

The uniqueness of the involutive automorphism of a Riemannian symmetric pair
allows us to give the following definition: 2

Definition 2.4.11. If (G,K) is a Riemannian symmetric pair with involution σ,
the Cartan involution is defined as Θ := deσ. The decomposition g = k⊕ p is called
the Cartan decomposition of g with respect to Θ.

To prove the proposition recall that the Killing form Bg of g is the trace form of
adg, that is, if X, Y ∈ g, then

Bg(X, Y ) := tr(adg(X) adg(Y ) .

This is obviously a symmetric bilinear form and it is invariant under Aut(G), that
is if τ ∈ Aut(G), then

Bg(X, Y ) = Bg(τ∗X, τ∗Y ) .

To verify this observe that

adg(τ∗X)(Y ) = [τ∗X, Y ] = τ∗[X, τ
−1
∗ Y ] = τ∗ adg(X)(τ−1

∗ (Y )) = (τ∗ adg(X)τ−1
∗ )(Y )

and hence

Bg(τ∗X, τ∗Y ) = tr(adg(τ∗X) adg(τ∗Y )) = tr(τ∗ adg(X) adg(Y )τ−1
∗ )

= tr(adg(X) adg(Y )) = Bg(X, Y ) .

Finally we will need the following:
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Lemma 2.4.12. Let G be a connected Lie group, K ≤ G a compact subgroup and
let z the Lie algebra of the center of G. If k ∩ z = {0}, then Bg is strictly negative
definite.

Proof. Since K is compact, then AdG(K) is a compact subgroup of GL(g)
and hence there exists a strictly positive definite quadratic form q on g such that
AdG(K) ≤ O(g, q). Thus AdG(K) consists of matrices that are self-adjoint with
respect to q and adg(k) os skew-symmetric matrices, adg(X) = − adg(X)∗ for all
X ∈ g. Thus for x ∈ k

Bg(X,X) = tr(adg(X) adg(X)) =
n∑

i,j=1

(adg(X))i,j(adg(X))j,i = −
n∑
j=1

(adg(X))2
i,i ≤ 0 .

Thus Bg(X,X) = 0 if and only if adg(X))i,j = 0 for all i, j, that is 0 = adg(X)(Y ) =
[X, Y ] for all X ∈ k and all Y ∈ g. Equivalently if and only if X ∈ z ∩ k. �

Proof of Proposition 2.4.9. Let σ1, σ2 ∈ Aut(G) be two involutive auto-
morphisms of G satisfying (Gσi)◦ ⊂ K ⊂ Gσi for i = 1, 2, and let g = k⊕ pi be the
corresponding decomposition, where pi is the eigenspace corresponding to the eigen-
value −1 of dpσi, i = 1, 2. Since σi ∈ Aut(G), the Killing form Bg is σi-invariant. It
follows that k is orthogonal to each of the pi with respect to Bg. In fact, if X ∈ k
and Y ∈ pi

Bg(X, Y ) = Bg(doσi(X), doσi(Y )) = Bg(X,−Y ) ,

and hence Bg(X, Y ) = 0.
Now if Y1 ∈ p1, and Y1 = X + Y2 is its orthogonal decomposition, then X =

Y1 − Y2 ∈ k ∩ k⊥. Since k ∩ z = {0}, Lemma 2.4.12 implies that the Killing form on
k must be negative definite and hence k ∩ k⊥ = {0}. It will then follow that p1 = p2

and σ1 = σ2. �

We saw in Lemma 2.4.7 that such decomposition exists and now we know that
it is unique.

Lemma 2.4.13. Let g = k⊕ p be the Cartan decomposition of g with respect to the
Cartan involution Θ. Then

[k, k] ⊂ k , [k, p] ⊂ p , [p, p] ⊂ k .

Proof. We prove that [k, p] ⊂ p, the other inclusions are similar. Let X ∈
k, Y ∈ p. Then

Θ[X, Y ] = [ΘX,ΘY ] = [X,−Y ] = −[X, Y ] ,

that is [X, Y ] belongs to the eigenspace of Θ with eigenvalue −1. �
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2.5. Exponential Maps and Geodesics

Let (G,K) be a Riemannian symmetric pair associated to a a Riemannian sym-
metric space M with base point p ∈M . By the Remark 2.4.10(2), there is a unique
involution σ and hence the Cartan decomposition of g is unique. Let π : G → M
be the projection map g 7→ g(p), let exp : g→ G be the Lie group exponential map
and Expp : TpM →M the Riemannian exponential map.

The following theorem gives the relation between the two exponential maps,
namely:

Theorem 2.5.1. The following diagram

p
deπ //

exp

��

TpM

Expp
��

G π
// M

commutes, that is π(exp(X)) = Expp(deπ(X)) for any X ∈ p.
The geodesic γ : R → M with γ(0) = p ∈ M and with tangent vector deπ(X),

for X ∈ p is given by

γdeπ(X)(t) = exp(tX)(p) .

Moreover every geodesic through any point q ∈M is of this form.

We start the proof with the following:

Lemma 2.5.2. Let M be a Riemannian symmetric space and γ : R→M a geodesic.
Then for every t, ` ∈ R

sγ(t+`) = sγ(t)sγ(0)sγ(`)(2.5.1)

and the map t 7→ Tt that to t ∈ R associates the translation by t along the geodesic
γ implemented by the transvection Tt is a homomorphism.

Proof of Theorem 2.5.1. We saw that for every a, b ∈ R, sγ(a)γ(b) = γ(2a−
b), from which it follows that

sγ(t1)sγ(t2) = T2(t1−t2) .

Thus the translation depends only on the difference t1 − t2 and hence

sγ(t+`)sγ(`) = sγ(t)sγ(0) ,

which, composing on the right by sγ(`) gives (2.5.1). Now, using (2.5.1) with ` = t′/2,
we have

Tt+t′ = sγ(t/2+t′/2)sγ(0) = sγ(t/2)sγ(0)sγ(t′/2)sγ(0) = TtTt′ .

�
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Proof. Let X ∈ p and let γ : R→M be the geodesic in M such that γ(0) = o
and γ̇(0) = deπX (hence γ(t) = γdeπ(X)(t) in the previous notation). Let Tt be the
translation by t along γ. Since Tt by the previous lemma is a homomorphim, it is a
one-parameter subgroup of G and hence there exists Y ∈ g such that Tt = exp(tY )
for all t ∈ R.

We are going to show that Y ∈ p, that is that deσ(Y ) = −Y . To this purpose,
observe that because of (2.5.1) and because of the definition of σ, σ(g) = sγ(0)gsγ(0),
we have

σ(Tt) = σ(sγ(t/2)sγ(0)) = σ(sγ(0)sγ(−t/2)) = sγ(−t/2)sγ(0) = T−t ,
or σ(exp tY ) = exp(−tY ). By differentiating this equality we obtain

(deσ)Y =
d

dt

∣∣∣∣
t=0

σ(exp tY ) =
d

dt

∣∣∣∣
t=0

exp(−tY ) = −Y ,

so that Y ∈ p.
To conclude that X = Y , notice that by definition π(Tt) = Tt(p) = γ(t). By

differentiating this expression, we obtain that

d

dt

∣∣∣∣
t=0

π(Tt) =
d

dt

∣∣∣∣
t=0

γ(t) = (deπ)X .

On the other hand by the chain rule

d

dt

∣∣∣∣
t=0

π(Tt) = deπ
d

dt

∣∣∣∣
t=0

Tt = (deπ)Y ,

and thus X = Y .
Finally if now η is any geodesic through a generic point q ∈ M , there exists

g ∈ G, such that η(0) = g · p. Hence g−1η is a geodesic which goes through p when
t = 0, and is hence of the form g−1η(t) = exp(tX)(p). Thus every geodesic η, is of
the form η(t) = g exp(tX)(p) for some X ∈ p. �

The above theorem shows, in particular, that the Riemannian exponential map
Exp : TM →M does not depend on its Riemannian metric and gives a formula for
the geodesics in M .

We are now interested in finding a formula for the derivative of the Riemannian
exponential map at a point X ∈ p, formula that we will use both in computing the
curvature tensor in § 2.6 and in characterizing the totally geodesic submanifolds of
a Riemannian symmetric space in § 2.7. This will go in three steps:

(1) We will use, without a proof, the formula in Theorem A.2.10 for the differ-
ential at a point X ∈ TpM of the exponential map Exp∇ associated to an
(analytic) connection ∇.

(2) We will construct in Lemma 2.5.4 a connection on a Lie group G whose
geodesics through e ∈ G are the one-parameter subgroups of G and thus
show that Exp∇ = exp. Then with the use of Theorem A.2.10 we can
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deduce in Theorem 2.5.3 a formula for the differential of the Lie group
exponential map.

(3) Finally in Corollary 2.5.5 we will use the formula for the differential of the
Lie group exponential in Theorem 2.5.1 and the relation in Theorem 2.5.1 of
the Lie group exponential with the Riemannian exponential on G/K to de-
duce the needed formula for the differential of the Riemannian exponential
map Exp on M = G/K.

Theorem 2.5.3. Let G be a Lie group with Lie algebra g and let exp : g → G the
Lie group exponential map. By identifying TXg ∼= g, so that dX exp : TXg ∼= g →
Texp(X)G, we have

dX exp = deLexpX ◦
∞∑
n=0

(adng X)

(n+ 1)!
(2.5.2)

As announced, we will need the following lemma, whose proof we postpone to
the end of the section.

Lemma 2.5.4. There exists a connection ∇ on G such that:

(1) ∇ is G-invariant (in the sense of (A.2.1));

(2) ∇X̃ Ỹ = 0 for every left invariant vector fields X̃, Ỹ ∈ VectG(G);
(3) the exponential map associated to ∇ coincides with the Lie group exponen-

tial map Exp∇ = exp.

Proof of Theorem 2.5.3. Because of Lemma 2.5.4(2), left invariant vector

fields are parallel, hence on a normal neighborhood X̃ = X∗ by uniqueness. Let

X̃e = X ∈ g and Ỹe = Y ∈ g. Then by Theorem A.2.10 applied to M = G and
q = e ∈ G we have that for X, Y ∈ g,

(dX(Exp∇))(Y ) =

(
∞∑
n=0

(− adg(X̃))n

(n+ 1)!
(Ỹ )

)
(Exp∇)(X)

.(2.5.3)

Since the vector field
∑∞

n=0
(− adg(X̃))n

(n+1)!
(Ỹ ) is left invariant, then(

∞∑
n=0

(− adg(X̃))n

(n+ 1)!
(Ỹ )

)
(Exp∇)(X)

= deL(Exp∇)(X)

∞∑
n=0

(− adg(X))n

(n+ 1)!
(Y ) ,

so that (2.5.3) becomes

(dX(Exp∇))(Y ) = deL(Exp∇)(X)

∞∑
n=0

(− adg(X))n

(n+ 1)!
(Y ) .(2.5.4)

With the use of and Lemma 2.5.4(3) this formula is exactly the one we needed to
show. �
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Before getting to the proof of the Lemma we deduce the formula we will need.
Let M = G/K be a symmetric space, p ∈ M a basepoint with K = StabG(p) and
π : G→ G/K. Recall that deπ : p→ Tp(G/K) is an isomorphism and we can define
Exp ◦deπ : p→ Tp(G/K)→ G/K. Then we have:

Corollary 2.5.5. The differential

dX(Exp ◦deπ) : p→ T(Exp(X)◦de(X))(p)M

of the Riemannian exponential map

Exp ◦deπ : p→ G/K

is given by

dX(Exp ◦deπ) = dpLexpX ◦
∞∑
n=0

(TX)n

(2n+ 1)!
,(2.5.5)

where TX = (adgX)2 for X ∈ p.

Proof. We recall that the diagram

G
π //

Lg

��

G/K

Lg
��

G π
// G/K

commutes, so that

π ◦ LexpX = LexpX ◦ π .(2.5.6)

In Theorem 2.5.1 have proven that for any X ∈ p, π ◦ exp(X)|p = Expe ◦deπX|p,
so that, if we set L(X) :=

∑∞
n=0

(− adgX)n

(n+1)!
,

dX(Expe ◦deπX|p) =dX(π ◦ exp(X)|p)
=dexpXπ ◦ dX(exp |p)
=dexpXπ ◦ dX(exp)|p
=dexpXπ ◦ deLexpX ◦ L(X)

=de(π ◦ LexpX) ◦ L(X)|p
=de(LexpX ◦ π) ◦ L(X)|p
=(dpLexpX) ◦ deπ ◦ L(X)|p

where we used in the fourth inequality Theorem 2.5.3 and in the sixth one (2.5.6).
Now observe that, because of Lemma 2.4.13, if Y ∈ p,

adg(X)n(Y ) ∈

{
k if n is odd

p if n is even,
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so that

deπ ◦ adg(X)n(Y )

{
= 0 if n is odd

= adg(X)n(Y ) if n is even.

Thus

deπ ◦ L(X)|p = de ◦
∞∑
n=0

(− adgX)n

(n+ 1)!

∣∣∣∣∣
p

=
∞∑
n=0

(adgX)2n

(2n+ 1)!
,

which completes the proof. �

We are now left with the proof of the lemma.

Sketch of the proof of Lemma 2.5.4. Let C∞(G, g) bethe space of C∞

maps G→ g and define

X : C∞(G, g) −→ Vect(G)

F 7−→ {g 7→ deLgF (g)}
which is an isomorphism of C∞-modules. It is not difficult to verify that there is a
correspondence between connections on G and maps

D : C∞(G, g)× C∞(G, g)→ C∞(G, g)

that satisfy the following properties:

(1) D is R-linear in the first variable and C∞-linear in the second variable;
(2) (Leibniz rule) for every f ∈ C∞(G), F1, F2 ∈ C∞(G, g),

DF1(fF2)(g) = f(g)DF1F2(g) + de(f ◦ Lg)(F1(g))F2(g) .

(Notice that here (f ◦ Lg)(h) = f(hg) and de(f ◦ Lg) : TeG → R is hence
a linear form whose evaluation at F1(g) fives a function of g that then
multiplies F2(g).)

In fact for every connection ∇ : Vect(G)×Vect(G)→ Vect(G) one can define a map
D : C∞(G, g)× C∞(G, g)→ C∞(G, g) by

(DF1F2)(g) := (deLg)
−1((∇X(F1)X(F2))(g)) ,

and likewise every map D that satisfies (1) and (2) gives rise to a connection ∇ on
G via

∇X(F1)X(F2)(g) := deLg(DF1F2)(g) ,

so that the diagram

C∞(G, g)× C∞(G, g)
D //

X×X
��

C∞(G, g)

X
��

Vect(G)× Vect(G)
∇
// VectG(G)

commutes.



2.6. CURVATURE 31

Now in order to define a connection ∇ we define

(DF1F2)(g) :=
d

dt
F2(g exp tF1(g))

∣∣∣∣
t=0

= de(F2 ◦ Lg) : TeG = g→ TF2(g)g ∼= g .

One can verify that D satisfies (1) and (2) and moreover it is G-invariant.
Finally, observe that X(F ) is left invariant if and only if F is constant. In fact

X(F ) is left invariant if and only if X(F )g = (deLgh−1)X(F )h for every g, h ∈ G.
Since

(deLgh−1)X(F )h = (deLgh−1)(deLh)F (h) = (deLg)F (h)

and

X(F )g = (deLg)F (g) ,

left invariance is equivalent to F (g) = F (h) for every g, h ∈ G. Thus if F1, F2 are
constant, then DF1F2 = 0.

The only thing left to verify is that the Lie group exponential and the exponential
coming from the left invariant connection are the same. To this purpose, let X
be a left invariant vector field and let γX be the unique integral curve such that
γX(0) = e and γ̇X(t) = Xt. (It is not difficult to show that although the existence
of the integral cure is usually only local, γX can be defined for all t ∈ R.) It will be
enough to show that this integral curve is a geodesic and a homomorphism, because
in this case it will be both the geodesic that defines the exponential coming from
the left invariant connection and one-parameter subgroup that defines the Lie group
exponential. Since ∇XY = 0, then ∇γ̇X(t)γ̇Y (t) = 0 and hence γX is a geodesic. To
see that it is a homomorphism, since ∇ is left invariant, for all s ∈ R the two curves
t 7→ γX(t+ s) and t 7→ γX(s)γX(t) are both geodesics in G and both go through the
point γX(s) when t = 0. Moreover

d

dt

∣∣∣∣
t=0

(γX(s)γX(t)) = dγX(t)LγX(s)γ̇X(0) = γ̇X(s) ,

where the last equality follow from the definition of γX and the fact that X is left
invariant. Hence γX(s+ t) = γX(t)γX(s) and the proof is complete. �

2.6. Curvature

The goal of this section is to prove the following

Theorem 2.6.1. Let (G,K) be a symmetric pair as in § 2.5 and let R be the
curvature tensor of G/K with respect to the Riemannian metric Q. Then at the
point o ∈ G/K

Ro(X̄1, X̄2)X̄3 = −[[X̄1, X̄2], X̄3]

where X̄i = deπXi, for Xi ∈ p, i = 1, 2, 3.
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Sketch of the proof. We compute first the sectional curvature, then use it
to compute the curvature tensor. The proof follows [Hel01, Theorem IV.4.2, p.
215].

To compute the sectional curvature we use the formula in [Hel01, Lemma I.12.1,
p.64], according to which the sectional curvature can be computed as

K = −3

2
∆(f)(0) ,

where f is the function giving the ratio of the surface elements in the tangent plane
and the surface, and where ∆ is the Laplacian, that is the operator ∆ := ∂2

∂x21
+ ∂2

∂x22
,

with respect to the coordinate functions x1, x2 in an orthonormal basis.
In our specific case, let {X1, . . . , Xn} be an orthonormal basis of p and P ⊂ p

be a two-dimensional subspace spanned by {X1, X2}. Let N0 ⊂ p be a normal
neighborhood of the origin and give Σ := Exp(P ∩N0) ⊂ G/K the induced metric
from M = G/K. Then the exponential maps of Σ and of M coincide when restricted
to P ∩ N0, and hence we can use (2.5.5) to compute dX Exp. In other words, if
X ∈ P ∩N0,

f(X) =
|dX ExpX1 ∨ dX ExpX2|

|X1 ∨X2|
=
∞∑
n=0

(TX)n(X1)

(2n+ 1)!
∨
∞∑
n=0

(TX)n(X2)

(2n+ 1)!
,

since the X1, X2 are orthonormal and left translations are isometries. Writing X =
x1X1 + x2X2, expressing TX in terms of x1 and x2 and computing the derivatives in
the Laplacian, with some patience one obtains that

K(P ) = Q0(adg([X1, X2])X1, X2) .(2.6.1)

Define now a quadrilinear form

B(X, Y, Z, T ) := Q0((R(X, Y ) + adg[X, Y ])Z, T ) ,

for X, Y, Z, T ∈ p. Because of (2.6.1) and of the definition of sectional curvature
in (A.2.2), then B(X1, X2, X1, X2) = 0. From this and from the properties of the
curvature, it follows that B(X, Y,X, Y ) = 0 for all X, Y ∈ p. In fact from (R1) and
(R2) in (A.2.3) if

X = x1X1 + x2X2 and Y = y1X1 + y2Y2 ,

then

B(X, Y,X, Y ) = (x1y2 − x2y1)2B(X1, X2, X1, X2) ,

so that B(X, Y,X, Y ) = 0 for all X, Y ∈ p. Then playing around with the sym-
metries of B (see for example [Hel01, Lemma I.12.4, p. 68]), it is easy to see that
B ≡ 0. �

Corollary 2.6.2. The Levi-Civita connection of a Riemannian globally symmetric
space is independent of the metric.
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2.7. Totally Geodesic Submanifolds

Definition 2.7.1. A subspace n of a Lie algebra g is a Lie triple system if [[X, Y ], Z] ∈
n for all X, Y, Z ∈ n.

Lie triple systems correspond to totally geodesic submanifolds in the following
sense:

Theorem 2.7.2. Let M be a Riemannian globally symmetric space and let n be
a Lie triple system in p. Assume that M = G/K, where K = StabG(p0). Then
N := Exp n is a totally geodesic submanifold of M such that Tp0N = n.

Conversely, if N is a totally geodesic submanifold and p0 ∈ N , then the subspace
n = Tp0N is a Lie triple system.

Proof. Let n ⊂ p be a Lie triple system. Then [n, n] ⊂ [p, p] ⊂ k. We verify
that n + [n, n] ⊂ g is a Lie subalgebra. To see this, we remark first of all that since
n is a Lie triple system, then [n, n] is a Lie subalgebra. In fact, if X, Y, Z,W ∈ n,
then, the Jacobi identity applied to [X, Y ], Z and W reads

0 = [[X, Y ], [Z,W ]] + [[Y, [Z,W ]], X] + [[[Z,W ], X], Y ] ,

where [Y, [Z,W ]], [[Z,W ], X] ∈ n. Hence

[[X, Y ], [Z,W ]] = −[[Y, [Z,W ]], X]− [[[Z,W ], X], Y ] ∈ [n, n] .

It follows that if X, Y, Z,X ′, Y ′, Z ′ ∈ n, then

[X + [Y, Z], X ′ + [Y ′, Z ′]] ∈ n + [n, n] =: g′ .

Let now G′ < G be the analytic subgroup whose Lie algebra is g′. Let M ′ := G′ · p0

and let K ′ = StabG′(p0). Then K ′ < G′ is closed (since the G′-action on M is
continuous) and hence G′/K ′ has a differentiable structure that can be induced on
M ′ ∼= G′/K ′. It follows that M ′ is a submanifold of M and Tp0M

′ ∼= n. (In fact, it is
enough to see that Lie(K ′) = [n, n]. But Lie(K ′) ⊂ Lie(K)∪Lie(G′) = k∩ [n+[n, n],
so that if X = X1 + X2 ∈ Lie(K ′), then X = X2.) The M -geodesic through p0 are
all of the form exp(tX) · p0 for X ∈ p and X ∈ n if and only if exp(tX) · p0 ∈ M ′.
It follows that M ′ is geodesic at p0 and, since G′ is transitive, it is totally geodesic
and M ′ = Exp n (since Expp0(tX) = expG(tX)p0 = expG′(tX)p0.)

To see the converse, let N ⊂ M be a totally geodesic submanifold. Then for
X, Y ∈ Tp0N the geodesics t 7→ Exp(tX) and t 7→ Exp(tY ) are in N , so that we
can consider the restriction Exp : Tp0N → N and its differential dtY Exp : Tp0N →
TExp(tY )N .

It follows from Corollary 2.5.5, we have that

dtY Exp(X) = doLexp tY ◦
∞∑
n=0

(TtY )n

(2n+ 1)!
(X) .

By definition, the vector dtY Exp(X) is tangent to the geodesic t 7→ Exp(tY )
so that, by parallel translation, doLexp(−tY ) ◦ dtY Exp(X) is parallel to dtY Exp(X)
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along exp(tY ) and hence it is in Tp0N =:n. But for all t ∈ R

doLexp(−tY ) ◦ dtY Exp(X) =
∞∑
n=0

(TtY )n

(2n+ 1)!
(X) ∈ n ,

so that TY (X) ∈ n. But

TY+Z(X) = adg(Y + Z)(adg(Y + Z)(X))

=[Y + Z, [Y + Z,X]]

=[Y + Z, [Y,X] + [Z,X]]

=[Y, [Y,X]] + [Y, [Z,X]] + [Z, [Y,X]] + [Z, [Z,X]]

=TY (X) + TZ(X) + [Y, [Z,X]] + [Z, [Y,X]] ,

so that

[Y, [Z,X]] + [Z, [Y,X]] = TY+Z(X)− TY (X)− TZ(X) ∈ n .

By the Jacobi identity

n 3 [Y, [Z,X]] + [Z, [Y,X]] =[Y, [Z,X]] + [[Z, Y ], X] + [Y, [Z,X]]

=2[Y, [Z,X]] + [[Z, Y,X]]

=2[Y, [Z,X]] + [X, [Y, Z]]

(2.7.1)

and, exchanging the roles of X and Y ,

2[X, [Z, Y ]] + [Y, [X,Z]] ∈ n .(2.7.2)

Hence it follows from (2.7.1) and (2.7.2), and using twice the Jacobi identity, that

n 32[Y, [Z,X]] + [X, [Y, Z]]− (2[X, [Z, Y ]] + [Y, [X,Z]])

=2[X, [Z, Y ]] + 2[Z, [Y,X]] + [X, [Y, Z]]− (2[X, [Z, Y ]] + [Y, [X,Z]])

=3[Y, [Z,X]] + 3[X, [Y, Z]]

=3[Z, [Y,X]] ,

that is n is a Lie triple system. �

2.8. Examples

PROBABLY GET RID OF WHAT IS TYPES AND COPY FROM
THE HANDWRITTEN NOTES

2.8.1. SL(n,R)/SO(n). Let us consider

G = SL(n,R) = {g ∈ Mt×n(R) : det g = 1} .

We consider the involutive automorphism σ : G→ G, define dby p 7→ (gt)−1. Then

Gsigma = {g ∈ G : (gt)−1 = g} = {g ∈ G : gtg = e} = SO(n) =: K .
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The Lie algebra g = Lie(G) = sl(n,R) consists of all (n × n)-matrices with trace
0 and entries in R and the Cartan involution Θ : sl(n,R) → sl(n,R) is given by
Θ(X) := −X t for X ∈ sl(n,R). The Cartan decomposition is hence

X =
1

2
(X −X t) + +

1

2
(X +X t) ,

that is the decomposition of X into its antisymmetric and symmetric part. If so(n)
denotes the Lie algebra of SO(n) and sym0(n) the set of symmetric (n×n)-matrices
of trace zero with entries in R, we have

sl(n,R) = so(n)⊕ sym0(n) .

Denote o = eK ∈ G/K the base point and consider the positive definite symmetric
bilinear form

< X, Y >:= tr(XY ) ,

where X, Y ∈ To(G/K) ∼= p ⊂ g. This scalar product on To(G/K) can be extended
by left G-invariance to a G-invariant Riemannian metric on G/K.

The set Pos1(n) of positive definite symmetric (n×n)-matrices with determinant
one and real entries can be identified with G/K as follows: from elementary linear
algebra we know that any matrix p ∈ Pos1(n) can be written as a matrix product
p = btb, where b ∈ SL(n,R). The group SL(n,R) acts transitively on Pos1(n) via

g · p := gtpg ,

where p ∈ Pos1(n) and g ∈ SL(n,R). If In ∈ Pos1(n) is the identity matrix, then
SO(n) = StabSL(n,R)(In).

If n = 2, we can identify G/K (endowed with the G-invariant Riemannian metric
induced as above) with the real hyperbolic plane H2 := {x + iy : x ∈]RR, y > 0}
endowed with the metric ds2 = (dx2 + dy2)/y2. Indeed SL(2,R) acts transitively by
isometries via linea transformations on H2 and SO(2) is the isotropy subgroup of
i ∈ H2. So Pos1(2) with a metric rescaled by a factor of 2 can be identified with the
hyperbolic plane (H2, ds2).

2.8.2. G/K, where G < SL(n,R) is a closed adjoint subgroup (i.e. Gt =
G). As an involutive automorphism we take again σ(g) := (gt)−1, so that K =
G ∩ SO(n). if o = eK ∈ G/K denotes the base point, endow G/K with a left
invariant Riemannian metric as above.

2.8.2.1. The group G = SO(p, q) of linear transformations leaving invariant the
bilinear form

Q(x, y) = −
p∑
i=1

xiyi +

p+q∑
j=p+1

xjyj

on Rp+q is invariant under transposition. So if K = G∩SO(p+q) = SO(p)×SO(q),
we get a symmetric space G/K.
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The Cartan decomposition of the Lie algebra of SO(p, q) is given by so(p, q) =
k⊕ p, where k = s(p)× s(q) ⊂ sp(p+ q) is the Lie algebra of K and

p =

{(
0 B
Bt o

)
: B ∈Mp×q(R)

}
⊂ sym0(p + q) .

In particular if p = 1, this symmetric space, with an appropriately rescaled metric,
is isometric to the q-dimensional hyperbolic space.

2.8.2.2. The group G = Sp(2q,R) leaving invariant the standard symplectic form

ω(x, y) =

q∑
i=1

xiyq+i −
q∑
j=i

xq+jyj

on R2q is invariant under transposition. If K = Sp(2q,R) ∩ SO(2q), then G/K is a
symmetric space.

The Cartan decomposition of Lie(G) is given by of sp(2q,R) = k⊕ p, where

k =

{(
A B
−Bt a

)
: A,B ∈Mq×q(R), At = −A

}
⊂ so(2q)

is the Lie algebra of K and

p =

{(
A B
−Bt a

)
: A,B ∈Mq×q(R), At = A

}
⊂ sym0(2q) .

Recall that a complex structure on a real vector space V is an endomorphism J of
V with the property that J2 = −IdV . Moreover if g ∈ GL(V ), then g ◦ J ◦ g−1 is
also a complex structure.

Consider the set S2q of complex structures on the symplectic vector space (R2q, ω)
such that the symmetric bilinear from defined on R2q by

qJ(x, y) := ω(x, Jy)

is positive definite. A complex structure with this property is called ω-compatible.
The group G = Sp(2q,R) acts naturally on S2q by conjugation, namely g·J = gJg−1,
for g ∈ Sp(2q,R) and J ∈ S2q. Indeed if g ∈ Sp(2q,R), then

qg·J(x, y) = ω(x, gJg−1y) = ω(g−1x, Jg−1y) = qJ(g−1x, g−1y) ,

so that qg·J is positive definite if qJ is. Moreover the action is transitive. Indeed
we choose as a base point o ∈ S2q the ω-compatible complex structure given by the
matrix

J0 :=

(
0 −Id q

Id q 0

)
;

its associates symmetric bilinear form qJ0 is the standard scalar product in R2q. then
the isotropy subgroup of G at o is precisely the group K = Sp(2q,R) ∩ SO(2q), so
S2q = Sp(2q,R) · o can be identified with G/K.

If q = 1, then Sp(2,R) = SL(2,R) so the subspace S2 of R2 can be identified
with the hyperbolic plane (H2, ds2), after rescaling the metric appropriately.
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2.8.2.3. The group G = SL(2,R) × SL(2,R) acts by isometries on H2 × H2

endowed with the produt metric and K = SO(2)×SO(2) fixes the point o := (i, i) ∈
H2 × H62. in this case the symmetric space G/K endowed with the G-invariant
metric induced by < X, Y >= tr(XY ) is isometric to a product of hyperbolic planes
H2 ×H2.

2.9. Decomposition of Symmetric Spaces

2.9.1. Orthogonal Symmetric Lie Algebras. We have seen that a globally
symmetric space M together with the choice of a base point o ∈ M gives rise to a
pair (g,Θ), where g is the Lie algebra of (the connected component of) the group
of isometries of M and Θ is the Cartan involution in Definition 2.4.11, that is the
differential Θ = deσ of the involutive automorphism σ of G induced by the geodesic
symmetry at o.

We denote by Int(g) the Lie algebra of inner automorphisms of g. Notice that if
g is semisimple then all automorphisms are inner and that if g is the Lie algebra of
a Lie group G, then Int(g) = AdG(G). CHECK THAT IT IS CORRECT. p.
130?

Definition 2.9.1. Let g be a Lie algebra over R, k ⊂ g a Lie subalgebra and K
the Lie subgroup of AdG(G) ≤ GL(g) corresponding to the Lie subalgebra adg(k) ⊂
adg(g). The Lie algebra k is called compactly embedded in g if K is compact.

Remark 2.9.2. If G is a Lie group with Lie algebra g, K < G is the Lie subgroup
corresponding to the Lie subalgebra k ⊂ g, then K = AdG(K) (as both groups are
generated by AdG(exp(X)), for X ∈ k). TRUE ALSO IF G IS NOT LINEAR?

Definition 2.9.3. (1) An orthogonal symmetric Lie algebra is a pair (l, ς),
where l is a Lie algebra over R and ς ∈ Aut(l) is an involutive automor-
phism of l such that its set of fixed points u := {X ∈ l : ςX = X} is a
compactly embedded subalgebra of l.

(2) The orthogonal symmetric Lie agebra (l, ς) is effective if l ∩ z = {0}, where
z ⊂ l is the center of l.

The prominent example of effective orthogonal symmetric Lie algebra is the pair
(g,Θ) coming from a globally Riemannian symmetric space (see Teorem 2.2.7 ).

Definition 2.9.4. Let (l, ς) be an effective orthogonal symmetric Lie algebra with
Killing form Bl, and let l = u⊕ e be the decomposition of l into the eigenspaces of
ς corresponding respectively to the +1 and the −1 eigenvalue.

(1) If l is semisimple and compact, then (l, ς) is called of compact type.
(2) If l is semisimple and non-compact, and moreover if Bl|u is negative definite

and Bl|e is positive definite, then (l, ς) is called of non-compact type.
(3) If e is an Abelian ideal, then (l, ς) is called of Euclidean type.

Lemma 2.9.5. The subspaces u and e are orthogonal with respect to the Killing
form.
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Proof. Let X ∈ u and Y ∈ e be arbitrary, so that, by definition, ςX = X and
ςY = −Y . Moreover, since ς is a Lie algebra automorphism,

Bl(X, Y ) = Bl(ςX, ςY ) = Bl(X,−Y ) ,

which implies that Bl(X, Y ) = 0. �

Moreover, from last semester, we saw that the Killing form Bl restricted to u is
negative definite, since u is compactly embedded.

We say that a pair (L,U) is associated with an orthogonal symmetric Lie algebra
(l, ς), if L is a connected Lie group with Lie algebra l, and U is a Lie subgroup of L
with Lie algebra u. So one can define the type of a pair (L,U), according to the type
of the effective orthogonal Lie algebra to which it is associated. Similarly, the type
of a globally symmetric space M is defined as the type of an associated symmetric
pair (G,K) naturally associated to an effective orthogonal symmetric Lie algebra
(g,Θ) as above.

Notice that, even though every choice of a base point gives rise a priori to a
different Riemannian symmetric pair, the types of such pairs are not changed: if
instead of a base point o ∈ M we take the base point x = g · o, for g ∈ G, then Lie
algebra g is the same and the involution Θ is replaced by AdG(g)Θ.

Theorem 2.9.6. Let (l, ς) be an effective orthogonal symmetric Lie algebra. Then
there exist ideals l0, l+ and l− such that

(1) l can be decomposed as a direct sum l = l0 ⊕ l+ ⊕ l−.
(2) The ideals l0, l+ and l− are invariant under ς and orthogonal with respect

to the Killing form Bl.
(3) The pairs (l0, ς|l0), (l+, ς|l+) and (l−, ς|l−) are effective orthogonal symmetric

Lie algebras respectively of the Euclidean type, compact type and non-
compact type.

The rest of this subsection is devoted to the sketch of the proof of this theorem.

Recall first of all from linear algebra that if E is a Euclidean space with scalar
product Q and B : E × E → R is a symmetric bilinear form, then there exists
an orthonormal basis (f1, . . . , fn) (orthonormal with respect to Q) with respect to
which B is diagonal. More specifically, we can write

B(x, y) = Q(Ax, y) ,

for all x, y ∈ E, where A ∈ End(E) is symmetric. Then there exists T ∈ O(n,R)
such that T−1AT is diagonal (and we write T−1AT = diag(β1, . . . , βn)). Thus,
setting Tej =: fj, we have

B(fi, fj) = Q(Afi, fj) = Q(ATei, T ej) = Q(T−1ATei, ej) = βiδij

and Q(fi, fj) = δij since (f1, . . . , fn) is orthonormal.
To apply this, let us consider the adjoint subgroup U ≤ Adl(l) corresponding

to adl|u. Thus U is a compact subgroup of GL(l) that leaves e invariant (since
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adl(u)e = [u, e] ⊂ e) and hence there exists a positive definite symmetric bilinear
form Q on e.

Let us define

e0 =
∑
βj=0

Rfj , e+ =
∑
βj>0

Rfj , e− =
∑
βj<0

Rfj .(2.9.1)

It is immediate that

Lemma 2.9.7. (1) e = e0 ⊕ e+ ⊕ e− is a direct sum decomposition;
(2) the subspaces e0, e+ and e− are orthogonal with respect to Q and Bl, and

invariant under ς.
(3) Moreover e0, e+ and e− are invariant under U and under adl(u).

Proof. The first two assertions are obvious and the third one follows from the
fact that Bl and Q are invariant under Lie algebra automorphisms (hence under U)
and hence the U -action commutes with A. Namely, for Z ∈ U ,

Q(AX, Y ) =Bl(AX, Y ) = Bl(Adl(Z)AX,Adl(Z)(Y ))

=Q(AAdl(Z)X,Adl(Z)(Y ))

=Q(Adl(Z)−1AAdl(Z)X, (Y )) ,

so that Adl(Z)−1AAdl(Z) = A. Then

Bl(Adl(Z)f,Adl(Z)f) = Q(AAdl(Z)f,Adl(Z)f)

= Q(Adl(Z)Af,Adl(Z)f)

= Q(Af, f) = Bl(f, f) ,

hence the invariance of e0, e+ and e−. �

Lemma 2.9.8. The subspaces e0, e+ and e− satisfy the following relations:

(1) e0 = {X ∈ l : Bl(X, Y ) = 0 for all Y ∈ l}.
(2) [e0, e] = {0} and e0 is an Abelian ideal in l.
(3) [e−, e+] = {0}.

Proof. (1) Let n := {X ∈ l : Bl(X, Y ) = 0 for all Y ∈ l}. Observe that if
f ∈ e0, then Bl(f, Y ) = 0 for all Y ∈ e0 and hence, by Lemma 2.9.7, for all Y ∈ e
and, by Lemma 2.9.5, for all Y ∈ l, so that e0 ⊂ n.

To see the reverse inclusion, observe that, since it is defined in terms of Bl, n is
invariant under the Lie algebra automorphism ς, so n = (n∩ u)⊕ (n∩ e). But since
Bl is negative definite on u, then n ∩ u = {0} and hence n ⊂ e. But, by definition,
n ∩ e+ = n ∩ e− = {0}, so that n ⊂ e0.

(2) Since e0 is the kernel of Bl, it is an ideal. Moreover, by definition of e and u,
[e0, e] ⊂ u. Then, by Lemma 2.9.7(3), if X ∈ e0 and Z ∈ u, then [X,Z] ∈ e0. It
follows that if Y ∈ e, then, using (1),

Bl([X, Y ], Z) = −Bl(Y, [X,Z]) = 0 .
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Since Bl is non-degenerate on u and [X, Y ] ∈ u, then [X, Y ] = 0.

(3) Again, since [e+, e−] ⊂ u and Bl is non-degenerate on u, it suffices to show that
Bl(u, [e+, e−]) = 0. By the same argument as before, if Z ∈ u, X± ∈ e±, we have

Bl([Z, [X−, X+]) = −Bl([X−, Z], X+) = 0 ,

since, by Lemma 2.9.7(3), [X−, Z] =∈ e−. �

We now define

u+ := [e+, e+] u− := [e−, e−] and u0 := u	Bl
(u+ ⊕ u−) ,

where the last equality denotes the orthogonal complement of u+ ⊕ u− in u with
respect to Bl.

Lemma 2.9.9. The subspaces u0, u+, u− are ideals in u, they are orthogonal with
respect to Bl and their direct sum is u.

Proof. Again by Lemma 2.9.7(3), [u, e±] ⊂ e±, so that, by the Jacobi indentity,

[u±, u] = [[e±, e±], u] = −[[e±, u], e±]− [[u, e±], e±] ⊂ [e±, e±] = u± .

To see that u+ and u− are orthogonal with respect to Bl, let X±, Y± ∈ e±. Then,
by adl-invariance of Bl, we have

Bl([X+, Y+], [X−, Y−]) = Bl(X+, [Y+, [X−, Y−]) = 0 ,

where the last equality follows from the fact that

[Y+, [X−, Y−] = −[X−, [Y−, Y+]]− [Y−, [Y+, X−]] = −[X−, 0]− [Y−, 0] = 0 ,

by Lemma 2.9.8(3). �

The following lemma will be necessary to show that some combination of the
above defined subspaces are ideals.

Lemma 2.9.10. We have:

(1) [u0, e−] = [u0, e+] = {0}.
(2) [u−, e0] = [u−, e+] = {0}.
(3) [u+, e0] = [u+, e−] = {0}.

Proof. (1) Let Z ∈ u0, X, Y ∈ e±. Then

Bl([Z,X], Y ) = Bl(Z, [X, Y ]) = 0 ,

since [X, Y ] ∈ u± and u± is orthogonal to u0. Since [u0, e±] ⊂ e± and Bl restricted
to e± is non-degenerate, then [Z,X] = 0, that is [u0, e±] = {0}.

(2) and (3) Using the definition of u± and the Jacobi identity, we have [u±, e0] =
[[e±, e±], e0] = [e±, [e±, e0]] = {0}, because of Lemma 2.9.8 (2). Likewise, [u±, e∓] =
[[e±, e±], e∓] = [e±, [e±, e∓]] = {0}, because of Lemma 2.9.8 (3). �
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Now it is clear that since

l = u⊕ e = (u0 ⊕ u+ ⊕ u−)⊕ (e0 ⊕ e+ ⊕ e−) ,

to find the l0, l+ and l− we have to rearrange the direct summands.
It seems that setting

l0 = u0 ⊕ e0 l+ = u+ ⊕ e+ l− = u− ⊕ e− .

might be a good idea. In particular, it follows immediately from Lemma 2.9.10 that
the l0, l+ and l− are ideals, so that, in particular, their Killing form is the restriction
of the Killing form of l.

• The Killing form Bl− = Bl|l− is negative definite, hence l− is semisimple and
compact. Thus (l−, ς|l−) is an effective orthogonal symmetric Lie algebra of
compact type.
• The Killing form Bl+ = Bl|l+ is negative definite on u+ and positive definite

on e+, hence it is non-degenerate. Thus (l+, ς|l+) is an effective orthogonal
symmetric Lie algebra of non-compact type.
• We showed already in Lemma 2.9.8(2) that e0 is an Abelian ideal. Moreover,

since l± are semisimple, the center z of l must be all contained in l0 and
hence z0 = z. Thus z0 ∩ u0 ⊂ z ∩ u = {0} and hence we are left to observe
that u0 is compactly embedded. But this is true since u ⊂ l, u± ⊂ l± are
all compactly embedded and l is the direct sum of the ideals l0 ⊕ l+ ⊕ l−,
(see [Hel01, Lemma V.1.6]).

Remark 2.9.11. We were a bit sloppy in the last part of the proof, in that the
decomposition we proposed is valid only if e0 6= {0}. In fact, if e0 = {0}, then our
proposed l0 would be equal to u0. As a consequence, we would have that ς = Id ,
which was not allowed. We hence set if e0 = {0}:

l0 := {0} l− := u0 ⊕ u− ⊕ e− l+ := u+ ⊕ e+ if e− 6= {0} ;

l0 := {0} l− := {0} l+ := u− ⊕ u+ ⊕ e+ if e− = {0} .

2.9.2. Sectional Curvature of Symmetric Spaces.

2.9.3. Decomposition.

2.9.4. Duality. We start with a couple of examples.

Example 2.9.12. Let g = sl(n,R). Then sl(n,R)C = sl(n,C). In fact, A ∈ sl(n,C)
if and only if tr(A) = 0 if and only if < tr(A) = = tr(A) = 0 if and only if tr<(A) =
tr=(A) = 0.

Example 2.9.13. Let g = su(n,C) = {X ∈ sl(n,C) : X∗ + X = 0, where X∗ =

X
t}. Observe that su(n,C) is a real Lie algebra. We claim that su(n,C)C = sl(n,C).

In fact,

isu(n,C) = {iX ∈ sl(n,C) : X∗ +X = 0} = {X ∈ sl(n,C) : X∗ = X} .
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But for any A ∈ sl(n,C) we can write

A =
A− A∗

2︸ ︷︷ ︸
su(n,C)

+
A+ A∗

2︸ ︷︷ ︸
isu(n,C)

,

so sl(n,C) = su(n,C)⊕ isu(n,C).

Example 2.9.14. Let g = o(p, q). Since any two non-degenerate quadratic forms
over C are equivalent, then o(p, q)C = o(p + q,C). In particular o(n,R)C = o(n,C)
and o(1, n− 1)C = o(n,C).

Definition 2.9.15. If h is a complex Lie algebra, a real form of h is a real Lie
algebra g such that gC = h. If h is semisimple, then g is called a compact form if Bg

is negative definite . By abuse of notation, if h is a real Lie algebra, by a compact
form we mean a compact form of hC.

Every semisimple Lie algebra has a compact form, [Hel01, Theorem III.6.3].
Let (l, ς) be an orthogonal symmetric Lie algebra with decomposition l = u⊕ e.

Let l∗ be the subspace of lC defined by l∗ = u⊕ ie. Then l∗ is a Lie algebra with the
bracket inherited from lC

[X + iY, Z + iT ] = [X,Z]− [Y, T ] + i([X,T ] + [Y.Z]) ,

and the map ς∗ : lC → lC defined by ς∗(X + iY ) := (X − iY ) is an involutive
automorphism of l∗. We call (l∗, ς∗) the dual of (l, ς), (so that (l, ς) will be the dual
of (l∗, ς∗)).

Proposition 2.9.16. Let (l, ς) be an orthogonal symmetric Lie algebra. Then

(1) The pair (l∗, ς∗) is an orthogonal symmetric Lie algebra.
(2) The pair (l, ς) is of non-compact type (resp. compact type) if and only if

(l∗, ς∗) is of compact type (resp. non-compact type).
(3) The pair (l1, ς1) is isomorphic to (l2, ς2) if and only if (l∗1, ς

∗
1 ) is isomorphic

to (l∗2, ς
∗
2 ).

We recall that two orthogonal symmetric Lie algebra (l1, ς1) and (l2, ς2) are iso-
morphic if there exists an isomorphism ϕ : l1 → l2 such that ς2ϕ = ϕς1.

Sketch of the proof. We will just give few comments. For the details see
[Hel01, Proposition V.2.1]. To show (1) one has to show that if u is compactly
embedded in l, then u is compactly embedded in l∗. Recall that this means that
if ad(u) ⊂ gl(l) is compactly embedded, then ad(u) ⊂ gl(l) is also compactly em-
bedded. But both gl(l) and gl(l) are real subalgebras of gl((lC)R) and hence (1)
follows.

To see (2) it is enough to observe that Bl|e is positive (resp. negative) definite if
and only if Bl|ie is negative (resp. positive) definite.

(3) follows from the fact that any isomorphism between l1 and l2 extends to an
isomorphism of complexifications. �
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Example 2.9.17. Let l = so(p + q) and let ςpq denote the automorphism ςpq :
gl(p+ q,C)→ gl(p+ q,C) defined by

ςpq(X) := IpqXIpq ,(2.9.2)

where Ipq =

(
−Ip 0

0 Iq

)
. It is easy to check that ςpq(l) = l. Then (l, ςpq) is an

orthogonal symmetric Lie algebra of compact type with decomposition l = u ⊕ e,
where

u =

{
X =

(
X1 0
0 X2

)
∈ so(p+ q) : X1 ∈ so(p), X3 ∈ so(q)

}
e =

{
X =

(
0 X2

−X t
2 0

)
∈ so(p+ q) : X2 ∈Mp,q(R)

}
.

Hence (SO(p + q), SO(p)× SO(q)) is a pair associated to (l, ςpq).
Now let (l∗, ς∗pq) be the dual of (l, ςpq), that is l∗ = u⊕ ie, with the same ςpq (that

is ς∗ is the restriction to l∗ of the automorphism defined in (2.9.2). It is easy to see
that the map(

X1 iX2

−iX t
2 X3

)
7→
(
X1 X2

−X t
2 X3

)
=

(
−iIp 0

0 Iq

)(
X1 iX2

−iX t
2 X3

)(
iIp 0
0 Iq

)
is an isomorphism of l∗ onto so(p, q). The pair associated to (l∗, ς∗pq) is (SO(p, q), SO(p)×
SO(q)).

Example 2.9.18. We consider now the above case but with p = 1 and q = 3. Let
H be the algebra of the quaternions,

H := {x0 + x1i+ x2j + x3k : ij = k, jk = i ki = j, i2 = j2 = k2 = −1} .
The conjugation of x = x0 + x2i + x2j + x3k ∈ H is x = x0 − x1i− x2j − x3k, and
the norm is N(x) =

√
x2

0 + x2
1 + x2

2 + x2
3, so that x−1 = x/N(x). The trace of an

element x ∈ H is defined as tr(x) := x + x, and, by using the fact that xy = yx, it
is easy to see that the trace is invariant under conjugation, namely

tr(yxy−1) = tr(x)

for all x, y ∈ H. Let H0 be the subspace of elements in H with trace 0, also called
the pure quaternions, and G the group of elements in H of norm one. Observe that
G is diffeomorphic to S3. Consider the map

Tx,y(u) := xuy−1 .

Since N(Tx,y(u)) = N(u), then Tx,y preserves the norm; moreover, since G is con-
nected, then {Tx,y : x, y ∈ G} is connected, so that Tx,y ∈ SO(4). In fact, the
map

(x, y) 7→ Tx,y

is a homomorphism T : G × G → SO(4). Likewise, the map τx := Tx,x leaves H0

invariant and hence τ : G→ SO(3) is a homomorphism.
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It is not difficult to show that τ is surjective. In fact the tangent space to G at 1
is T1G = {v : v + v = 0} and the differential d1τ can be easily computed to obtain

d1τ(v)(x) = vx− xv .
The elements {i, j, k} form a basis of T1G, and H0 = Ri ⊕ Rj ⊕ Rk, so that from
d1τ(i)(i) = 0, d1τ(i)(j) = 2k and d1τ(i)(k) = −2j, one obtains

d1τ(i) =

0 0 0
0 0 −2
0 2 0

 .

And analogous calculation for d1τ(j) and d1τ(k) shows that d1τ is surjective onto
so(3). Observe also that ker τ = {e,−e}, and G is simply connected, hence G is the
universal covering of SO(3).

Likewise one can show that T : G × G → SO(4) is surjective with kernel
{(e, e), (−e,−e)}.

Hence we have a Lie algebra homomorphism

ϕ = (τ−1 × τ−1) ◦ T : so(3)× so(3)→ so(4) .

If ς : so(3)× so(3)→ so(3)× so(3) is defined by ς(X, Y ) := (Y,X) and ς13 : so(4)→
so(4) is defined as in Example 2.9.17, then it is easy to check that ϕς = ς13ϕ. The
two orthogonal symmetric Lie algebra (so(3) × so(3), ς) and (so(4), ς13) are hence
isomorphic.

2.9.5. Irreducible Orthogonal Symmetric Lie Algebras.

Definition 2.9.19. Let (l, ς) be an orthogonal symmetric Lie algebra (with decom-
position l = u⊕ e). We say that (l, ς) is irreducible if

(1) l is semisimple and u contains no non-trivial ideals of l, and
(2) adl(u) acts irreducibly on e.

Proposition 2.9.20. Let (l, ς) be an orthogonal symmetric Lie algebra. Assume
that (l, ς) is semisimple and u has no non-trivial ideals of l. Then there are ideals li
of l such that:

(1) l =
∑⊕

j lj;

(2) the lj are pairwise orthogonal with respect to the Killing form Bl and are
ς-invariant;

(3) the (lj, ςj) are irreducible orthogonal symmetric Lie algebras.

We will not prove this, but just indicate how the proof should go. We refer back
to the proof of Theorem 2.9.6. Let

e =
∑
j

fj

be the decomposition of e into irreducible subspaces of A (see (2.9.1)). Then (see
Lemma 2.9.7) the fj are orthogonal with respect to Q and Bl, and invariant under
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ς, and moreover they are invariant under U and under adl(u). Thus one obtains a
decomposition

e =
∑
j

ej ,

where the ej are invariant and irreducible under adl(u). One can then set uj := [ej, ej]
and lj := uj ⊕ ej and argue as in the proof of Theorem 2.9.6.

Theorem 2.9.21 ([Hel01, Theorem VIII.5.3 and Theorem VIII.5.4]). The follow-
ing diagram describes all irreducible orthogonal symmetric Lie algebras. There is
moreover a correspondence between irreducible orthogonal symmetric Lie algebras
on the left and their dual counterpart on the right.

COMPACT TYPE NON-COMPACT TYPE
(l, ς), where l is compact and simple
and ς is any involutive automorphism

(l, ς), where l is a non-compact simple
Lie algebra over R, ς is an involutive
automorphism and u is compactly em-
bedded

(l, ς), where l is a compact Lie algebra
direct sum l = l1 ⊕ l2 of simple ideals
which are interchanged by the involu-
tive automorphism ς

(l, ς), where l = gR with g a simple Lie
algebra over C. Here ς is the conju-
gation with respect to a maximal com-
pactly embedded subalgebra.





CHAPTER 3

Symmetric Spaces of Non-Compact Type

3.1. Introduction

From now on we will consider only symmetric spaces of non-compact type. We
have shown in Theorem 2.9.6 that these have non-positive sectional curvature. We
know already that the connected component of the isometry group is semisimple.
More precisely, we have the following:

Proposition 3.1.1. The connected component of the identity of the isometry group
of a globally symmetric space of non-compact type is a semisimple Lie group with
trivial center and no compact factors.

Sketch of the proof. If there were a non-trivial center, then each central
element would commute with the geodesic symmetries. But this would contradict
the fact that each geodesic symmetry has a unique fixed point. If there were compact
factors, then the curvature on these compact factors would be positive, hence the
symmetric space would not be of compact type. �

In this chapter M is a globally symmetric space of non-compact type, G =
Iso(M)◦ and K := StabG(o) < G is the compact stabilizer of a base point o ∈ M .
Moreover g = k⊕ p is the Cartan decomposition, deπ : p→ ToM is the vector space
isomorphims in Theorem 2.5.1, where π : G → M is the natural projection. The
Riemannian structure on M will be the one induced by the Killing form Bg|p. The
fact that this assumption is not restrictive follows from the following result:

Proposition 3.1.2. If g is a simple Lie algebra over C and Q is any bilinear form
on g that is adg-invariant, then there exists a constant c such that Q = cBg.

If g is a real Lie algebra, the same assertion hold for any symmetric bilinear
form.

Proof. Let us first assume that g is a complex Lie algebra. Since Bg is non-
degenerate, then there exists A ∈ End(g) such that Q(X, Y ) = Bg(AX, Y ). Since g
is simple, then adg : g → gl(g) is an irreducible representation (because otherwise
any invariant subspace would be an ideal). So, by Schur’s lemma, it suffices to
show that A commutes with adg(X), for all X ∈ g, because then A = cId and the
assertion is proven.

Since Bg is non-degenerate, to see that (A adg(X))Y = (adg(X)A)Y it suffices
to show that

Bg((A adg(X))Y, Z) = Bg((adg(X)A)Y, Z)

47
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for all Y, Z ∈ g. But

Bg((A adg(X))Y, Z) = Q(adg(X)Y, Z) = −Q(Y, adg(X)Z)

= −Bg(AY, adg(X)Z) = Bg((adg(X)A)Y, Z) .

�

3.2. Properties of the Stabilizer of a Point in M

The goal of this section is to show that if M is a Riemannian symmetric space
of non-compact type and M ∼= G/K, then K < G is a maximal compact subgroup.

More specifically:

Proposition 3.2.1. Let M be a Riemannian symmetric space of non-compact type,
and G = Iso(M)◦. Then:

(1) If o ∈M is any point, then StabG(o) is a maximal compact subgroup of G.
(2) If K is a maximal compact subgroup of G, then K = StabG(p) for some

p ∈ M and hence any two maximal compact subgroups are conjugated by
an element g ∈ G.

The proof relies upon Cartan fixed point theorem:

Theorem 3.2.2 (Cartan fixed point theorem). Let M be a complete simply con-
nected manifold of non-positive curvature and let H < Iso(M) be a group of isome-
tries with a bounded orbit. Then H fixes a point p ∈M .

We assume for the moment Cartan theorem and proceed to prove the result
about maximal compact subgroups.

Proof of Proposition 3.2.1. (1) Let K ′ < Iso(M)◦ a compact subgroup
such that K < K ′. By Cartan fixed point theorem there exists p ∈ M such that
K ′ ≤ StabG(p). If g ∈ G is such that gp = o, then

gKg−1 < gK ′g−1 ≤ g StabG(p)g−1 = StabG(gp) = StabG(o) = K ,

and hence the above are equalities, and in particular K = K ′.

(2) If K is a maximal compact, then by Cartan fixed point theorem K fixes a point
q ∈ M , so that K ⊂ StabG(q). But by (1), StabG(q) is a maximal compact, hence
K = StabG(q).

The statement about conjugacy follows from the transitivity of G on M . �

In order to prove Cartan fixed point theorem we will first prove the following
lemma, that states that there is a unique smallest closed ball with center in A that
contains A.

Lemma 3.2.3. Let M be a complete simply connected manifold of non-positive sec-
tional curvature. Let A ⊂M be a compact subset and, if p ∈ A, let us define

r(p) := sup{d(p, q) : q ∈ A} .
Then r takes its minimum value in a unique point in A.
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We assume the lemma for the moment.

Proof of Theorem 3.2.2. Let p ∈M be a point such that the orbitH ·p ⊂M
is bounded and let A := H · p. Then A is a H-invariant compact set, hence the
unique point p0 ∈ A where the minimum of r : A → R is attained is also H-
invariant. �

Finally, to conclude the proof we need to use the fact that we are in nonpositive
curvature. The key point is the following:

Theorem 3.2.4 ([Hel62, Theorem 13.1]). Let M be a complete Riemannian man-
ifold of non-positive curvature, p ∈ M and expp : TpM → M the exponential map.
If v ∈ TpM and ξ ∈ Tv(TpM) ∼= TpM , then Then

‖dp expp(ξ)‖ ≥ ‖ξ‖ .

Moreover if σ : [0, 1]→ TpM is a smooth curve, then L(σ) ≤ L(expp ◦σ).
In particular if M is simply connected, then

d(expp(v), expp(w)) ≥ ‖v − w‖ ,(3.2.1)

for any v, w ∈ TpM .

Corollary 3.2.5 (Law of cosines). If a, b, c are the length of the sides of a geodesic
triangle in a non-positively curved simply connected manifold and γ is the angle
opposite to the side of length c, then

c2 ≥ a2 + b2 − 2ab cos γ .

Proof. The law of cosines in Rn ∼= TpM applied to the triangle with sides
v, w ∈ TpM such that ^p(v, w) = γ, ‖v‖ = a and ‖w‖ = b, gives us that

‖v − w‖2 = a2 + b2 − 2ab cos γ .

0

v

w expw

expvv−w

g g

p

Since the exponential map is an isometry along rays at p ∈ M and since
^p(v, w) = ^p(expp(v), expp(w)), we conclude the assertion from (3.2.1) in the above
theorem. �

Remark 3.2.6. Theorem 3.2.4 proves that a Riemannian globally symmetric space
of noncompact type is a CAT(0) space, that is a geodesic metric space in which trian-
gles are ”thinner” that triangles with geodesic sides of the same length in Euclidean
space.
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An analogous notion of CAT(κ) space can be given by comparison with triangles
in a ”model space” Mκ of curvature κ.

The CAT(κ) space generalize the notion of manifold to a purely metric setting.
For more about this notion see [BH99].

Proof of Lemma 3.2.3. Since |r(p1)−r(p2)| ≤ d(p1, p2), the function r : A→
R is continuous and hence it attains a minimum on the compact set A.

Let us assume that the minimum rmin of r is attained on the two points p1, p2 ∈ A
and let p0 be the midpoint of the geodesic segment joining p1 and p2. Let q ∈ A be
any point in A. Since π = ^p0(p1, q) +^p0(p1, q), where ^p0(p1, q) denotes the angle
at p0 subtended by p1 and q (that is the angle between the tangent vectors at p0

of the two geodesics joining p0 with p1 and q) then one of the two angles ^p0(p1, q)
or ^p0(p1, q) must be ≥ π/2. By relabelling p1 and p2 if necessary, let us assume
that ^p0(p1, q) ≥ π/2. From the law of cosines applied to the geodesic triangle with
vertices in p0, p1, q, we obtain that

d2(q, p1) ≥d2(q, p0) + d2(p1, p0)− 2d(q, p0)d(p1, p0) cos(^p0(p1, q))

≥d2(q, p0) + d2(p1, p0) > d2(q, p0) .

Hence

d(q, p0) < max{d(q, p1), d(q, p2)} ≤ rmin ,

which implies, by compactness of A, that

r(p0) = sup{d(q, p0) : q ∈ A} < rmin .

This is a contradiction and hence there is unique point in A where the minimum is
attained. �

3.3. Flats and Rank

Definition 3.3.1. A k-flat in M is a totally geodesic k-dimensional submanifold
isometric to Rk. The rank rk(M) of M is defined as

rk(M) := max{k ∈ N : there exist a k − flat in M} .
If r is the rank of M , an r-flat is a maximal flat.

Notice that a 1-flat is nothing but a geodesic. Moreover, if the sectional curvature
of the symmetric space is strictly negative, then the symmetric space must be of
rank one. The rank one symmetric spaces of non-compact type are exactly the
real, complex and quaternionic hyperbolic spaces and the hyperbolic plane over the
Cayley numbers. All other symmetric spaces of non-compact type are of rank greater
than or equal to two and hence have flats that are totally geodesic. The existencewhy

totally geodesic? of these flats gives rise to completely different phenomena.

We want to address now the issue of trying to understand the algebraic coun-
terpart of flats. Recall that, according to Theorem 2.7.2, a flat F is of the form
F = exp n · o, where n ⊂ p is a Lie triple system. Moreover the sectional curvature
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restricted to F is zero, so that for all X, Y ∈ n ∼= ToF such that Bg(X, Y ) = 0,
Bg(X,X) = Bg(Y, Y ) = 1, we have

0 = K(S) = Bg([X;Y ], [X;Y ]) ,

where S is the plane spanned by X, Y . Since Bg is negative definite, it must be that
[X, Y ] = 0, so that n must be abelian.

If a ⊂ p is a maximal abelian subspace of dimension r = rk(M), then F :=
exp a · o is a maximal flat in M . Since G acts by isometries, on M , gF is also a
flat for all g ∈ G. In fact, it is also true that every flat in M is a translate of a flat
through o ∈M .

Example 3.3.2. We have seen that if M = SL(n,R)/SO(n,R), then p = sym0(n) =
{X ∈ sl(n,R) : X = Xt}. A maximal abelian subspace of p is

a :=

{
diag(t1, . . . , tn) : tj ∈ R,

n∑
j=1

tj = 0

}
.

We have seen that SL(n,R)/SO(n,R) is the set Pos1(n) of positive matrices with
determinant 1, with the action g · p = gtpg for p ∈ Pos1(n), g ∈ SL(n,R) and with
base point Idn ∈ Pos1(n). Hence a maximal flat is

F = exp a · o =

{
diag(e2t1 , . . . , e2tn) : tj ∈ R,

n∑
j=1

tj = 0

}

=

{
diag(λ1, . . . , λn) : λj > 0,

n∏
j=1

λj = 1

}
and rk(M) = n− 1.

Exercise 3.3.3. Show that a is a maximal abelian subspace of p.

Example 3.3.4. Let M = SO(p, q)/SO(p) × SO(q), for p ≤ q. A maximal abelian
subspace a ⊂ p is given by

a =

{(
0 A
A 0

)
: A = (aij) ∈Mp×q(R), aij = 0 if i 6= j

}
,

so rk(SO(p, q)/SO(p)× SO(q)) = min{p, q}.

Example 3.3.5. If M = Sp(2q,R)/(SO(2q) ∩ Sp(2q,R)), then a maximal abelian
subspace a ⊂ p is given by

a =

{(
A 0
0 −A

)
: A = diag(t1, . . . , tq), tj ∈ R

}
.

and hence rk(M) = q.
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Let ω be the standard symplectic form on R2q given by

(
0 −Id q

Id q 0

)
. The set

S2q of ω-compatible complex structures on the symplectic vector space (R2q, ω) is dif-
feomorphic to Sp(2q,R)/(SO(2q)∩Sp(2q,R)), with the isomorphism corresponding
to the choice of base point J0 ∈ Sp(2q,R), where

J0 :=

(
0 −Id q

Id q 0

)
.

Since the action of Sp(2q,R) on S2q is by conjugation, then

F = exp a · o

=

{(
A 0
0 A−1

)(
0 −Id q

Id q 0

)(
A−1 0

0 A

)
: A = diag(et1 , . . . , etn), tj ∈ R

}
=

{(
0 −A2

A−2 0

)
: A = diag(et1 , . . . , etn), tj ∈ R

}
=

{(
0 diag(−λ1, . . . ,−λn)

diag( 1
λ1
, . . . , 1

λn
) 0

)
: λj > 0

}
.

Example 3.3.6. A maximal flat in H2 ×H2 is a set

{(c1(t1), c2(t2)) : t1, t2 ∈ R} ,
where cj is a geodesic in the j-th factor for j = 1, 2.

Lemma 3.3.7. Every geodesic is contained in at least one maximal flat.

Proof. Let γ ∈ M be a geodesic. Then there exists g ∈ G and X ∈ p such
that γ(t) = g exp tX · o, for t ∈ R. If a is a maximal abelian subspace a ⊂ p that
contains X, then γ is contained in g exp a · o. �

Definition 3.3.8. Let X ∈ p and let

Centrg(X) := {Y ∈ g : [Y,X] = 0}
be the centralizer of X in p. The vector X is called regular if Centrg(X) ∩ p is
maximal abelian and singular otherwise.

Notice that if X ∈ p is singular, then dim(Centrg(X) ∩ p) > rk(M). The next
lemma, that we will not prove, shows that regular elements always exist in any
maximal abelian subspace.

Lemma 3.3.9 ([Hel01, Lemma V.6.3(i)]). Let a ⊂ p be a maximal abelian subspace.
Then there exists an element X ∈ a such that Centrg(X) ∩ p = a.

Theorem 3.3.10. If a, a′ are maximal abelian subspaces of p, there exists k ∈ K
such that a′ = AdG(k)a.

Corollary 3.3.11. All maximal abelian subspaces of p have the same dimension.
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Proof of Theorem 3.3.10. Let H ∈ a and H ′ ∈ a′ be two regular element.
Let k0 ∈ K be a critical point of the function f : K → R defined by f(k) :=
Bg(AdG(k)H,H ′). Then we have:

0 =
d

dt

∣∣∣∣
t=0

f(k0 exp(tZ)) =

=
d

dt

∣∣∣∣
t=0

Bg(AdG(k0 exp(tZ))H,H ′)

=
d

dt

∣∣∣∣
t=0

Bg(AdG(k0)AdG(exp(tZ))H,H ′)

= Bg(AdG(k0)
d

dt

∣∣∣∣
t=0

(AdG(exp(tZ)H), H ′)

= Bg(AdG(k0)(adg Z)H,H ′)

= Bg(AdG(k0)[Z,H], H ′)

= Bg(AdG(k0)Z, [AdG(k0)H,H ′]) .

Since p is AdG(K)-invariant, then AdG(k0)H ∈ p and hence [AdG(k0)H,H ′] ∈ k.
Since Z,AdG(k0)Z, [AdG(k0)H,H ′] ∈ k and Z is arbitrary, it follows from the non-
degeneracy of the Killing form that [AdG(k0)H,H ′] = 0, that is AdG(k0)H ∈
Centrg(H

′). Since H ′ is regular, this implies that AdG(k0)H ∈ a′. But a′ is abelian,
hence every element in a′ commutes with AdG(k0)H and hence every element of
AdG(k−1

0 )a′ commutes with H. Hence AdG(k−1
0 )a′ ⊂ a.

If we interchange now the roles of a and a′, we obtain that there exists some
k ∈ K such that AdG(k)a′ ⊂ a′. Thus

AdG(k)AdG(k−1
0 )a′ ⊆ AdG(k)a ⊆ a′ ,

which shows that Adg(k)AdG(k−1
0 )a′ = a′ = AdG(k)a. �

Corollary 3.3.12. The vector X ∈ p is regular if and only if the geodesic γ ⊂ M
defined by γ(t) = exp(tX) · o, t ∈ R, is contained exactly in one maximal flat.

Proof. Let X ∈ p be regular and let a, a′ ⊂ p be maximal abelian subspaces
such that γ ⊂ exp a · o and γ ⊂ exp a′ · o. Since X ∈ a′ and a′ abelian then all
elements in a′ commute with X and hence a′ ⊂ Centrg(X) ∩ p = a. But from
Theorem 3.3.10 we know that dim a = dim a′, so that from a′ ⊆ a we deduce that
a = a′.

Conversely, let us suppose that γ is contained in exactly one flat, γ ⊂ exp a · o,
where a ⊂ p is maximal abelian. Suppose that X is not regular, that is that
Centrg(X) ∩ p is not maximal abelian and hence a ( Centrg(X) ∩ p. Let X ′ ∈
Centrg(X) ∩ p and X ′ /∈ a and choose a′ ⊂ p such that X ′ ∈ a′. Since X ′ /∈ a, then
a 6= a′. Moreover, X ′ ∈ Centrg(X) ∩ p implies in particular that X ′ ∈ Centrg(X)
and hence [X,X ′] = 0. But this implies that X ∈ a′ and hence γ ⊂ exp a′ · o, which
is a contradiction. �
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Example 3.3.13 (Continuation of Example 3.3.2). X ∈ p is regular if and only if
all of its eigenvalues are distinct.

To illustrate this, let us look at the case n = 3 and at the vectorX = diag(1, 1,−2) ∈
sym0(3). It is easy to check that

k(θ) :=

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 ∈ K = SO(3)

satisfies

AdG(k(θ))X = X .

In particular there exists a one-parameter family of flats containing the geodesic
γ(t) := exp(tX) · o, t ∈ R.

Example 3.3.14 (Continuation of Example 3.3.5). X ∈ p is regular if and only if
all of its eigenvalues are distinct and different from zero.

If q = 2, the vector D = diag(1, 1,−1,−1) ∈ p is singular, as every element in
K of the form

k(θ) =


cos θ sin θ
− sin θ cos θ

0

0
cos θ sin θ
− sin θ cos θ


for θ ∈ R satisfies AdG(k(θ))X = X.

Then the geodesic γ(t) := exp(tX) =

(
0 −etId2

e−tId2 0

)
⊂ S4 belongs to the

following one-parameter family of flats with parameter θ{(
0 Aθ(−λ1,−λ2)

Aθ(
1
λ1
, 1
λ2

) 0

)
: λ1, λ2 > 0

}
⊂ S4 ,

where

Aθ(µ1, µ2) :=

(
µ1 cos2 θ + µ2 sin2 θ (µ2 − µ1) sin θ cos θ
(µ2 − µ1) sin θ cos θ µ1 sin2 θ + µ2 cos2 θ

)
,

for µ1, µ2 > 0.
Similarly, the vector Y = diag(1, 0,−1, 0) is invariant under AdG(k(θ)) for any

k(θ) ∈ K of the form

k(θ) =


1 0 0 0
0 cos θ 0 sin θ
0 0 1 0
0 − sin θ 0 cos θ

 .
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So for all θ ∈ R the geodesic

γ(t) := exp(tY ) · o =

 0
−e2t 0

0 −1
e−2t 0

0 1
0

 ⊂ S4

is contained in the flat


0 0 −λ1 0
0 ( 1

λ2
− λ2) sin θ cos θ 0 − 1

λ2
sin2 θ − λ2 cos2 θ

1
λ1

0 0 0

0 λ2 sin2 θ + 1
λ2

cos2 θ 0 (λ2 − 1
λ2

) sin θ cos θ

 : λ1, λ2 > 0


Example 3.3.15 (Continuation of Example 3.3.6). We can write a geodesic in H2×
H2 as

γ(t) = (c1(t cos θ), c2(t sin θ)) ,

where cj is a geodesic in the j-th factor, j = 1, 2 and θ ∈ [0, π/2]. Then γ is regular
if θ ∈ (0, π/2) and singular if θ = 0, π/2. So γ is singular if and only if the projection
onto one factor is one point.

3.4. Roots and Root Spaces

If Θ : g → g is the Cartan involution, we can define on g × g the following
positive definite bilinear form

〈〈X, Y 〉〉 := −Bg(X,Θ(Y )) .

Notice that the restriction of this form to p coincides with the Killing form.

Lemma 3.4.1. The operator adgX is self-adjoint with respect to 〈〈·, ·〉〉, for every
X ∈ p.

Proof. We need to show that if X ∈ p, Y, Z ∈ g, then

〈〈(adgX)Y, Z〉〉 = 〈〈Y, (adgX)Z〉〉 .

This is a simple verification. In fact, since Θ(X) = −X, then

〈〈(adgX)Y, Z〉〉 = −Bg((adgX)(Y ),Θ(Z)) = Bg(Y, (adgX)Θ(Z))

= Bg(Y, [X,Θ(Z)]) = Bg(Y, [−Θ(X),Θ(Z)])

= −Bg(Y,Θ((adgX)Z)) = 〈〈Y, (adX)Z〉〉 .

�

It follows from the above lemma that if a ⊂ p is a maximal abelian subspace,
then {adgX : X ∈ a} is a commuting family of self-adjoint operators and we can
consider the following
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Definition 3.4.2. A linear map α : a→ R is called a root of the pair (g, a) if

gα := {X ∈ g : (adgH)(X) = α(H)X for all H ∈ a} 6= {0} .
The subspace gα is called a root space.

If α ≡ 0, then a ⊆ g0 = Centrg(a). If

Σ := {α : α is a non-trivial root of (g, a)}
denotes the (finite) set of non-trivial roots of (g, a), then we have a decomposition

g = g0 ⊕
∑
α∈Σ

gα .

The root space decomposition is a very useful tool for studying, among others, the
geometry of symmetric spaces M of non-compact type. We start by characterizing
regular element in terms of roots.

Lemma 3.4.3. A vector 0 6= H ∈ a is regular if and only if α(H) 6= 0 for all α ∈ Σ.

Proof. Let us assume that H ∈ ar {0} is regular, that is that Centrg(H) ∩ p
is maximal abelian. Since a is maximal abelian and a ⊂ Centrg(H) ∩ p, then
a = Centrg(H) ∩ p. Suppose by contradiction that there exists α ∈ Σ such that
α(H) = 0. Let 0 6= X ∈ gα and let X = Xk + Xp be the decomposition (in fact,
Xk = X + Θ(X) and Xp = X −Θ(X)). Since [k, p] ⊂ p and [p, p] ⊂ k, we have that
for all A ∈ a

adg(A)(Xp) = α(A)Xk .(3.4.1)

If α(H) = 0, then adg(H)(Xp) = 0, that is Xp ∈ Centrg(H). But since Xp ∈ p and
a ⊂ Centrg(H) ∩ p, then Xp ∈ a. Hence, again from (3.4.1), for all A ∈ a,

0 = adg(A)(Xp) = α(A)Xk .

But since α 6≡ 0 on gα, then Xk = 0, so that X = Xp ∈ a. Thus gα ⊂ a, which is a
contradiction, as a ⊂ g0.

Conversely, let us suppose that Centrg(H) ∩ p is not maximal abelian, that is
a ( Centrg(H)∩p. Then there exists Y ∈ Centrg(H)∩p but Y /∈ a = Centrg(a)∩p.
Let Yα denote the projection of Y on the root subspace gα, so that Y = Y0⊕

∑
α∈Σ Yα,

where Y0 ∈ Centrg(a) ⊂ Centrg(H). Then

0 = [H,Y ] = [H,
∑
α∈Σ

Yα] =
∑
α∈Σ

[H,Yα] =
∑
α∈Σ

α(H)Yα .

If α(H) 6= 0 for all α ∈ Σ, then we would have that Yα = 0 for all α ∈ Σ, that is
Y = Y0 ∈ Centrg(a) ∩ p = a, that is a contradiction. �

We denote by areg the set of regular element in a.

Corollary 3.4.4.

areg = ar
⋃
α∈Σ

kerα .
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Definition 3.4.5. Let a be a maximal abelian subalgebra. A connected component
of areg is called a Weyl chamber in a.

Note that a Weyl chamber is an open cone in Euclidean space, as it is the
complement of a collection of hyperplanes

{X ∈ g : α(X) = 0} .

It is easy to see that a Weyl chamber can also be described as the equivalence classes
in a of the equivalence relation

H1 ∼ H2 α(H1)α(H2) > 0, for all α ∈ Σ .

We denote by Eij the matrix whose (i, j)-th matrix coefficient is 1 and all other
are 0.

Example 3.4.6 (Continuation of Example 3.3.2 and Example 3.3.13). Let G/K =
SL(n,R)/SO(n) and Hj := Ejj−Ej+1,j+1. Then (Eij, i 6= j,H1, . . . , Hn−1) is a basis
for g. If H = diag(t1, . . . , tn) =

∑n
j=1 tjEjj ∈ a, then it is easy to check that

adg(H)(Eij) = [H,Eij] = (ti − tj)Eij ,

and

adg(H)(Hj) = 0

for all i, j. Thus there are n(n− 1) non-zero roots {αij}i 6=j, given by

αij(A) = Aii − Ajj ,

and n(n− 1) one-dimensional root spaces gij := gαij spanned by Eij for i 6= j. The
space a is spanned by (H1, . . . , Hn−1) and g0 = a. In particular we can write

sl(n,R) = a⊕
∑
i 6=j

REij .

We show now that there is a one-to-one correspondence between the Weyl
chambers of a and the elements of the permutation group Sn in n letters. Let
A = diag(t1, . . . , tn) and B = diag(µ1, . . . , µn) be regular elements in a. Since A is
regular, the λj are distinct and there exists a unique permutation σ ∈ Sn such that

tσ(1) > · · · > tσ(n) .

Similarly, since B is regular, there exists a unique permutation τ ∈ Sn such that

µτ(1) > · · · > µτ(n) .

The condition that A,B determine the same Weyl chamber is exactly that they are
equivalent, that is

(ti − tk)(µi − µk) > 0
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for all i 6= k. It is not difficult to show that this holds if and only if σ = τ , so that
a Weyl chamber in a is given by

a+ := {diag(t1, . . . , tn) ∈ a :
n∑
i=1

ti = 0, t1 > t2 > · · · > tn} .

Example 3.4.7 (Continuation of the Example 3.3.4). If G/K = SO(2, 3)/(SO(2)×
SO(3)), then

a =




0

t1 0 0
0 t2 0

t1 0
0 t2
0 0

0

 : t1, t2 ∈ R


∼= R2} .

Let H := H(t1, t2) ∈ a be a matrix as above. Then

α1(H) := t1 and α2(H) := t2

are two roots.

Example 3.4.8 (Continuation of the Examples 3.3.5 and 3.3.14).

3.5. Root Space Decomposition

The root spaces enjoy nice symmetry properties that we will now investigate. If
α ∈ Σ, we define Hα ∈ a to be the unique element such that

α(H) = Bg(H,Hα) .

We call Hα a root vector.

Proposition 3.5.1. Let α, β ∈ Σ. Then:

(1) [gα, gβ] = gα+β.
(2) Θ(gα) = g−α, and, in fact, Θ is an isomorphism for each α ∈ Σ.
(3) If α ∈ Σ is not an integer multiple of another root in Σ, then the only

possible multiples of α in Σ are ±α,±2α.
(4) Θ leaves g0 invariant, hence g0 = (g0 ∩ k)⊕ a.
(5) If X ∈ a, then, as an endomorphism of gα, we have

AdG(exp(tX)) = exp(tα(X)) ,

for all α ∈ Σ.
(6) The root spaces are orthogonal with respect to the Killing form, that is

Bg(gα, gβ) = 0, whenever α + β 6= 0.
(7) Let α, β ∈ Σ. Then there exists integers k1, k2 ≥ 0, such that β + nα ∈ Σ,

for all −k2 ≤ n ≤ k1. Moreover

k2 − k1 = 2
Bg(Hα, Hβ)

Bg(Hα, Hα)
.
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In particular,

β − 2
Bg(Hα, Hβ)

Bg(Hα, Hα)
α ∈ Σ.

Proof. (1) Let X ∈ gα and Y ∈ gβ. Then [H,X] = α(H)X and [H, Y ] =
β(H)Y , so that

[H, [X, Y ]] = [[H,X], Y ] + [X, [H,Y ]] = [α(H)X, Y ] + [X, β(H)Y ]

= α(H)[X, Y ] + β(H)[X, Y ] = (α + β)(H)[X, Y ] .

(2) Let X ∈ gα. Then, by definition, [H,X] = α(H)X for all H ∈ a. Since a ⊂ p,
then Θ(H) = −H, so that

[H,Θ(X)] = −[Θ(H),Θ(X)] = −Θ[H,X] = −Θ(α(H)X) = −α(H)Θ(X) .

�

Theorem 3.5.2. Let G be a semisimple connected Lie group. Then every finite
dimensional representation of G (and of g) is semisimple (i.e. completely reducible).

There are at least two proofs.

Lemma 3.5.3. Let G be a compact Lie group. Then any representation of G on a
real or complex vector space is semisimple.

Proof. Let ρ : G → GL(V ) be a representation. Since G is compact, we can
find an invariant inner product on V , so that if W is an invariant subspace, then
also its orthogonal W⊥ is invariant. Now apply the same argument to W and W⊥.
Since V is finite dimensional, then the process comes to an end. �

Recall that, if k = R or C, then sl(2, k) is the Lie algebra generated by

X+ =

(
0 1
0 0

)
, X− =

(
0 0
1 0

)
, H =

(
1 0
0 −1

)
, ,

with Lie bracket

[X+, X−] = H , [H,X+] = 2X+ , [H,X−] = −2X− .

Theorem 3.5.4. Let k = R or C and let V be a finite dimensional vector space
over k. Let g ⊂ End(V ) a Lie algebra isomorphic to sl(2, k). Assume that V is
irreducible as a g-module. Then V has a basis of eigenvectors of H, namely

V =
∑
{Vλ : λ = (dimV − 1)− 2n , n = 0, . . . , dimV − 1} ,

where

Vλ := {v ∈ V : Hv = λv} .

In particular dimVλ = 1.
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Corollary 3.5.5. Let k,R or C be a finite dimensional vector space over k and g
subsetEnd(V ) a Lie algebra isomorphic to sl(2, k). Then V has a basis of eigenvec-
tors of H and there exist m1,m2 ∈ N, m ≥ 1, such that the eigenvalues λ of H on
V are integers λ = mi − 2n, where 0 ≤ n,≤ mi. In particular V is the direct sum
of exactly dimV0 + dimV1 irreducible submodules.

Proof of Theorem 3.5.4. �

Now we prove that if α ∈ Σ and g = g0 ⊕
∑

gα, then there is a copy of sl(2,R)
in gα ⊕ a⊕ g−α.

Lemma 3.5.6. Let X+ ∈ gα be such that

〈〈X+, X+〉〉 = −Bg(X
+,Θ(X+)) =

−2

Bg(Hα, Hα)

and set X− := Θ(X+). Then the real span of {X+, X−, H} is isomorphic to sl(2,R),
where

H = 2
Hα

Bg(Hα, Hα)
.

Proof. We had set α(Y ) := Bg(Y,Hα) for all Y ∈ a, so that, in particular,
α(H) = 2. Since Hα ∈ a, then, by definition of root space,

X+ ∈ gα ⇒ [H,X+] = α(H)X+ = 2X+

X− ∈ g−α ⇒ [H,X−] = α(H)X− = −2X− .

We need to check that [X+, X−] = H. We make the following:

Claim. [X+,Θ(X+)] = −Bg(X
+,Θ(X+))Hα.

If so, then

[X+, X−] =− [X+,Θ(X+)] = −Bg(X
+,Θ(X+))Hα

=
2

Bg(Hα, Hα)
Hα = H ,

and hence we are done.
We need now to prove the claim. Let α ∈ Σ and let Xα ∈ gα and X−α ∈ g−α be

any two vectors. Then for any Y ∈ a we have

〈〈[Xα, X−α], Y 〉〉 =−Bg([Xα, X−α],Θ(Y )) = Bg([Xα, X−α], Y )

=Bg(X−α, [Y,Xα]) = α(Y )Bg(X−α, Xα) .

If Z := [Xα, X−α]− Bg(X−α, Xα)Hα, then one can check that [Y, Z] = 0 and hence
Z ∈ g0. Moreover, from the above equation and the definition of Hα, it follows
easily that 〈〈Z, Y 〉〉 = 0 for all Y ∈ a. But according to Proposition 3.5.1(4) we
have that g0 = (g0 ∩ k)⊕ a and the sum is orthogonal, so that Z ∈ (g0 ∩ k).
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Now observe that, since [Xα,Θ(Xα)] = [Θ2(Xα),Θ(Xα)] = Θ([Θ(Xα), Xα]) =
−Θ([Xα,Θ(Xα)]), then

[Xα,Θ(Xα)] ∈ p = {X ∈ g : Θ(X) = −X} .
Moreover, since Θ(gα) = g−α and Hα ∈ a ⊂ p, then

Z = [Xα, X−α]−Bg(X−α, Xα)Hα = [Xα,Θ(Xα)]−Bg(Xα,Θ(Xα))Hα ∈ p .

Since Z ∈ g0 ∩ k, and k ∩ p = {0}, then Z = 0, that is

[Xα, X−α] = Bg(Xα,Θ(Xα))Hα ,

as we wanted to show. �

Definition 3.5.7. Let α, β ∈ Σ. An α-string of β is a subset of Σ of the form

{β + nα : r ≤ n ≤ s} .
An α-string is maximal if β + (r − 1)α /∈ Σ and β + (s+ 1)α /∈ Σ.

Lemma 3.5.8. Let α, β ∈ Σ and let {β + nα : r ≤ n ≤ s} a maximal α-string of β.
Then

2
Bg(Hα, Hβ)

Bg(Hα, Hα)
= −(r + s) .

Proof. LetX+, X−, H be as in Lemma 3.5.6, so that g′ := R−span{X+, X−, H} '
sl(2,R). Let

g′′ :=
∑
{gλ ∈ Σ : λ = β + nα, r ≤ n ≤ s} .

Consider the action of g′ on g′′, via adg. Since [gα, gβ] ⊂ gα+β, because α(H) = 2
and because of the maximality of the α-string of β, if µ is an eigenvalue of adg(H)
on g′′, then

β(H) + 2s = (β + sα)(H) ≤ µ ≤ (β + rα)(H) = β(H) + 2r .

By Corollary 3.5.5, β(H) + 2s = −(β(H) + 2r), that is −(r + s) = β(H). But by

definition of H and of Hβ, we have that β(H) = Bg(H,Hβ) = 2
Bg(Hα,Hβ)

Bg(H−α,Hα)
, hence

the assertion. �

End of the proof of Proposition 3.5.1. (7) We need to show that there
exists integers k1, k2 ≥ 0, such that β + nα ∈ Σ, for all −k2 ≤ n ≤ k1. Moreover
that

k2 − k1 = 2
Bg(Hα, Hβ)

Bg(Hα, Hα)
.

and in particular,

β − 2
Bg(Hα, Hβ)

Bg(Hα, Hα)
α ∈ Σ.
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Since β ∈ Σ, let us assume that

{β + nα : −k2 ≤ n ≤ k1}
is an α-maximal string of β and that

{β + nα : p ≤ n ≤ q}
is another α-maximal string of β. By the previous lemma we have that

−(p+ q) = 2
Bg(Hα, Hβ)

Bg(Hα, Hα)
= −(k1 − k2) .(3.5.1)

Note that, because of maximality, we must have that either k1 < p or q < −k2. In
either cases, the equality −(p+q) = −(k1−k2) cannot hold, hence {β+nα : −k2 ≤
n ≤ k1} is the unique maximal string. Moroever, from the right hand side of (3.5.1)
we obtain that, since

−k2 ≤ −k2 + k1︸ ︷︷ ︸
(k1−k2)

≤ k1 ,

then

β + (k1 − k2)α = β − 2
Bg(Hα, Hβ)

Bg(Hα, Hα)
α ∈ Z .

(3) We need to show that if α is not an integer multiple of another root, then the
only possible multiples of α in Σ are ±α and ±2α. In fact, if β = kα, then by
definition we have that Hβ = kHα.

Looking at an α-string of β, we deduce from Lemma 3.5.8 that

Z 3 2
Bg(Hα, Hβ)

Bg(Hα, Hα)
= 2

Bg(Hα, kHα)

Bg(Hα, Hα)
= 2k .

On the other hand, by considering a β-string of α, we get that

Z 3 2
Bg(Hβ, Hα)

Bg(Hβ, Hβ)
=

2

k
.

We deduce that k = ±,±2 are the only possibilities. �

3.6. Root Systems

Given the set Σ of nonzero roots and their respective root vectors, we can as-
sociate to α ∈ Σ the reflection Sα with respect to the hyperplane perpendicular to
Hα. Thus we can write

Sα(A) := A− 2
Bg(Hα, A)

Bg(Hα, Hα)
Hα .

It is immediate to see that Sα(Hα) = −Hα, while for all H ∈ a 	 Hα = {H ∈ a :
Bg(Hα, H) = 0}, we have that Sα(H) = H.

Proposition 3.6.1. Let {Hα , Sα : α ∈ Σ} be as above. Then:
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(1) R− span{Hα}α∈Σ = a.
(2) The reflections {Sα : α ∈ Σ} leave the set of root vectors invariant.

(3) 2 Bg(Hα,A)
Bg(Hα,Hα)

∈ Z.

The proposition shows that the above construction is only a particular case of a
more general one:

Definition 3.6.2. Let V be a finite dimensional vector space over R and R ⊂ V
a finite set of non-zero vectors. R is called a root system in V and its elements are
called root if the following conditions are verified:

(1) R generates V ;
(2) for each α ∈ R there exists a reflection sα along α that leaves R invariant

(that is a linear transformation such that sα(α) = −α and whose fixed
points are a hyperplane in V ).

(3) for all α, β ∈ R, the number mα,β determined by

saβ = β −mα,βα

is an integer, mαβ ∈ Z.

For more details see [Hel01, X.3.1].

Definition 3.6.3. The set {Hα , Sα : α ∈ Σ} is called the root system determined
by the maximal abelian subalgebra a.

Proof of Proposition 3.6.1. (1) Let a′ := span{Hα}α∈Σ and let H ∈ a	a′.
Then α(H) = 0 for all α ∈ Σ, so that adg(H) = 0. But this implies that H is in the
center of g which is trivial, since g is semisimple, hence H = 0.

(2) Let Hβ be a root vector and α ∈ Σ. We want to show that Sα(Hβ) is also a root
vector, that is that

γ(H) = Bg(Sα(Hβ), H)

for some γ ∈ Σ. By definition of Sα we have that

Bg(Sα(Hβ), H) = Bg

(
Hβ − 2

Bg(Hα, Hβ)

Bg(Hα, Hα)
Hα, H

)
=

(
β − 2

Bg(Hα, Hβ)

Bg(Hα, Hα)
α

)
(H)

By Proposition 3.5.1(7) we have that β − 2
Bg(Hα,Hβ)

Bg(Hα,Hα)
α ∈ Σ, hence (2) is proven.

(3) has already been proven in Lemma 3.5.8. �

Here are further properties of the root system determined by a. In fact, the
same properties hold for a general root system, where we only have to replace Bg

with any inner product that is left invariant by the group of linear transformation
generated by the reflections (see Definition 3.6.6).

Proposition 3.6.4. (1) If µ ∈ Σ is not a multiple of another root, then the
only multiples of µ are ±µ and ±2µ.

(2) If α and β are collinear roots, then



64 3. SYMMETRIC SPACES OF NON-COMPACT TYPE

(a) 0 ≤ 2
Bg(Hα,Hβ)

Bg(Hα,Hα)
2
Bg(Hβ ,Hα)

Bg(Hβ ,Hβ)
≤ 3 and

(b) moroever

Bg(Hα, Hβ) > 0⇒ α− β ∈ Σ and β − α ∈ Σ

Bg(Hα, Hβ) < 0⇒ α + β ∈ Σ .

Proof. (1) follows from Proposition 3.5.1(7).

(2)(a) Let us set µα,β = 2
Bg(Hα,Hβ)

Bg(Hα,Hα)
. Then if θα,β is the angle between α and β,

µα,βµβ,α = 2
‖Hβ‖
‖Hα‖

cos θα,β 2
‖Hα‖
‖Hβ‖

cos θβ,α = 4 cos2 θα,β ≤ 4 .

Since the µα,β are integers, if α and β are not collinear, than µα,βµβ,α ≤ 3.

(2)(b) Let us suppose that Bg(Hα, Hβ) > 0, so that µα,β and µβ,α must be positive.
Then either µα,β or µβ,α must be equal to 1. If µα,β = 1, then Sα(Hβ) = Hβ −
µα,βHα = Hβ −Hα ∈ Σ since the reflections preserve the set of root vectors. Hence
Hβ −Hα = Hγ for some γ ∈ Σ and it must be that γ = β − α since (β − α)(H) =
Bg(Hβ − Hα, H) = Bg(Hγ, H) = γ(H). Then also −(β − α) ∈ Σ. If on the other
hand µβ,α = 1, then one obtains with the same reasoning that α− β ∈ Σ and hence
also β − α ∈ Σ.

If Bg(Hα, Hβ) < 0, since −β ∈ Σ and −Hβ = H−β, then Bg(Hα, H−β) =
−Bg(Hα, Hβ) and hence the assertion follows from (2)(a) with α and −β. �

Definition 3.6.5. A root system is reduced if for all α ∈ Σ, the only multiple of α
in Σ are ±α.

Many root spaces are reduced, for example the root space associated to the
symmetric space SL(n,R)/SO(n).

Definition 3.6.6. The Weyl group W of R is the group of linear transformation of
V generated by the reflections

W := 〈Sα : α ∈ Σ〉 .

Again, this definition of Weyl group can be given for any root system. We will see
shortly another equivalent definition that makes sense in the case of a root system
coming from a symmetric space and that has a more geometric meaning.

We defined earlier the Weyl chambers as the connected components of

areg = ar
⋃
α∈Σ

kerα .

We also saw that any regular element H ∈ a defines uniquely a Weyl chamber
C(H). The next result (that we will not prove) shows that the Weyl group acts
simply transitively on the set of Weyl chambers in a.
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Proposition 3.6.7 ([Hel01, Hum72]). Let H1, H2 ∈ a be regular elements and
C(H1), C(H2) be the corresponding Weyl chambers. Then there exists an element
ϕ ∈ W such that ϕC(H1) = C(ϕH1) = C(H2). Moreover if ϕ ∈ W is such that
ϕC(H) = C(H), then ϕ is the identity.

3.6.1. Simple Roots and Bases.

Definition 3.6.8. A subset ∆ ⊂ Σ is called a basis for Σ if

(1) The elements of ∆ form a basis of α over R,
(2) If β ∈ Σ is any root, then β =

∑
α∈∆ mα · α, where the coefficients mα are

integers. Moreover, either mα ≥ 0 for all α ∈ ∆ or mα ≤ 0 for all α ∈ ∆.

Definition 3.6.9. A root α > 0 is simple if it cannot be written as sum of two
positive roots.

Lemma 3.6.10. Let α 6= β two simple roots. Then β − α is not a root and
Bg(Hα, Hβ) ≤ 0.

Proof. If β−α were to be a root γ ∈ Σ, then we could write β = α+γ if γ > 0
or α = β + γ if γ is negative, thus contradicting the simplicity of α and β.

Since β − α is not a root and β is, then in Proposition 3.5.1(7) we would have
that k2 = 0 and k1 > 0, so that

0 ≥ −k1 = k2 − k1 = 2
Bg(Hα, Hβ)

Bg(Hα, Hα)
,

which implies that Bg(Hα, Hβ) ≤ 0. �

Proposition 3.6.11. The set {α1, . . . , αr} of simple roots is a basis of the root
system.

Proof. We first show that the simple roots are linearly independent. In fact,
let us suppose that

γ :=
∑

miαi =
∑

njαj ,

where all αi 6= αj, mi ≥ 0 and nj ≥ 0. Then Hγ =
∑
miHαi =

∑
njHαj and hence,

by Lemma 3.6.10,

0 ≥ Bg(Hγ, Hγ) =
∑

minjBg(Hαi , Hαj) ≤ 0 .

Hence γ = 0, that is a contradiction.
The fact that the simple roots span α follows easily from the observation that

if α ∈ Σ were not simple, then one could write it as β + γ and continue with the
decomposition until one has only the sum of simple roots. �

Theorem 3.6.12. Each root system has a basis ∆ and any two basis are conjugate
under a unique Weyl group element. If Ws is the group of isometries of a generated
by {Sα : α ∈ ∆}, then Ws contains Sβ for all β ∈ ∆ and hence Ws is the Weyl
group.
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Sketch of the proof. We only need to find a set of simple roots, that is of
positive roots and then decompose them. Let H be a regular vector of a and let

Σ+
H := {α ∈ Σ : α(H) > 0} .

Then by Proposition 3.6.11 Σ+
H is a basis of Σ.

LOOK AT IT AGAIN Suppose now that B′ = {α1, . . . , αl} is another basis.

Then the element γ′ =
∑l

i=1 γi, where Bg(Hγi , Hαj) = δij satisfies Bg(αi, γ
′) > 0 for

all i. Moreover B′ is the set of simple roots in Σ+
H′γ

.

If α ∈ Σ, let πα be the hyperplane orthogonal to Hα. If C(Hγ) = C(Hγ′), then
Hγ and Hγ′ are on the same side of each πα, that is Σ+

Hγ
= Σ+

H′γ
or, equivalently, the

set of simple roots are the same. The assertion now follows from the fact that the
Weyl group acts simply transitively on the Weyl chambers (Proposition 3.6.7). �

3.7. Few Words on the Classification of Root Systems

Let R be a root system in V (see Definition 3.6.2). We say that R is irreducible if
it cannot be decomposed into two disjoint nonempty orthogonal subsets. It is easy
to see that any root system can be decomposed into the union of irreducible root
systems.

LetB = {α1, . . . , αn} be a basis ofR. According to the proof of Proposition 3.6.4,

if µαi,αj = 2
Bg(αi,αj)

Bg(αi,αi)
, then µαi,αjµαj ,αi ∈ {0, 1, 2, 3}. The Coxeter graph of R is a

graph with n vertices, where the i-th vertex is joined to the j-th one by µαi,αjµαj ,αi
non-intersecting lines. If R is irreducible, then there is a unique inner product on
〈〈 , 〉〉 on V up to a constant factors. We can hence give weight to the j-th vertex
equal to 〈〈αj, αj〉〉. The diagrams so obtained are called Dynkin diagrams and can
be completely classified (see for example [Hel01, X]). There are four ”classical”
(family of) diagrams al, bl, cl and dl and five ”exceptional” ones, e6, e7, e8, f4 and g2.

If R is not reduced, one can consider the set of indivisible roots, that is roots
such that if α ∈ R, then 1

2
α /∈ R. The set of indivisible roots form a reduced root

system that can be also classified.
So far we saw that associated to any simple Lie algebra (over C) there is an

irreducible root system that determines the Lie algebra up to isomorphism. We also
got a glimpse above on how one can proceed to classify the irreducible reduced root
systems. Finally, given any such irreducible root system, the last step is to construct
a Lie algebra corresponding to any of the above root systems.

3.8. The Weyl group from the Geometric Point of View

Let g = k⊕p be the Cartan decomposition with k the Lie algebra of the stabilizer
K of a point o ∈M .

Proposition 3.8.1. Let a ⊂ p be a maximal abelian subspace and {Hα, Sα : α ∈ Σ}
be the corresponding root system. Fix α ∈ Σ and let X ∈ gα be a vector with the
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property that 〈〈X,X〉〉 = 2. Let X = Kα + Pα the decomposition of X, where
Kα ∈ k and Pα ∈ p. Then:

(1) [Kα, Pα] = Hα.
(2) There exists t ∈ R such that AdG(exp(tXα)) = Sα, that is:

(a) AdG(gα) leaves a invariant;
(b) AdG(gα)(Hα) = −Hα;
(c) AdG(gα)(H) = H if Bg(Hα, H) = 0.

We start the proof with the following:

Lemma 3.8.2. With the hypotheses of Proposition 3.8.1, we have that

(1) [H,Pα] = α(H)Kα for all H ∈ a;
(2) [H,Kα] = α(H)Pα for all H ∈ a;
(3) Bg(Kα, Kα) = −Bg(Pα, Pα) = −1;
(4) [H, [Kα, Pα]] = 0 for all H ∈ a;
(5) Bg(H, [Kα, Pα]) = α(H) for all H ∈ a.

Proof. (1) and (2) have been already proven and used before. They follow from
the fact that [k, k] ⊂ k, [k, p] ⊂ p and [p, p] ⊂ k, the uniqueness of the decomposition
and the fact that X ∈ gα is an eigenvector of α.

(3) If H ∈ a is such that α(H) 6= 0, then, using (1) and (2),

α(H)Bg(Kα, Kα) = Bg([H,Pα], Kα) = −Bg(Pα, adg(H)(Kα)) = −α(H)Bg(Pα, Pα) .

To see the explicit value of Bg(Kα, Kα) = −Bg(Pα, Pα), observe that by definition
of X ∈ gα and of 〈〈 , 〉〉, and the fact that k and p are orthogonal with respect to
the Killing form, we have that

2 =〈〈X,X〉〉 = 〈〈Kα + Pα, Kα + Pα〉〉 = Bg(Kα + Pα, θ(Kα + Pα))

=Bg(Kα + Pα, Kα − Pα) = Bg(Kα, Kα)−Bg(Pα, Pα) .

(4) From the Jacobi indentity

[H, [Kα, Pα]] = [[H,Kα], Pα] + [Kα, [H,Pα]] = α(H)[Pα, Pα] + α(H)[Kα, Kα] = 0 .

(5) Using (3), we have

Bg(H, [Kα, Pα]) =−Bg(H, adg(Pα)(Kα)) = Bg(adg(Pα)(H), Kα)

=− α(H)Bg(Kα, Kα) = α(H) .

�

Proof of Proposition 3.8.1. (1) From Lemma ??(4) we deduce immedi-
ately that [Kα, Pα] ∈ a, so it is just a matter to determine exactly which element of
a. From Lemma ??(4) and the definition of Hα we have

Bg(H, [Kα, Pα]) = α(H) = Bg(H,Hα) ,

so that [Kα, Pα] = Hα.
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(2) From (1) and Lemma ??(2) with H = Hα, we have that

[Kα, H] = −α(H)Pα

and

(adg(Kα))2(H) = −α(H)[Kα, Pα] = −α(H)Hα .

Iterating this procedure (and multiplying by powers of t), we obtain

(t adg(Kα))2n(Hα) = (−1)nt2nα(Hα)nHα

and

(t adg(Kα))2n+1(Hα) = (−1)nt2n+1α(Hα)n+1Pα .

Hence

AdG(exp(tKα))(Hα) = exp(t adg(Kα))(Hα) =
∞∑
n=0

(t adg(Kα))n

n!
(Hα)

=
∞∑
n=0

(−1)nt2nα(Hα)n

(2n)!
(Hα) +

∞∑
n=0

(−1)nt2n+1α(Hα)n+1

(2n+ 1)!
(Pα)

= cos(t
√
α(Hα))Hα +

√
α(Hα) sin(t

√
α(Hα))Pα .

This means that AdG(exp(tKα)) rotates the vector Hα in the plane spanned by Hα

and Pα. In particular if t0
√
α(Hα) = π, then AdG(exp(t0Kα))(Hα) = −Hα.

Let now H ∈ a such that 0 = Bg(H,Hα) = α(H). It follows from Lemma ??(2)
that [H,Kα] = 0, and hence

AdG(exp(tKα))(H) = exp(t adg(Kα))(H) =
∞∑
n=0

(t adg(Kα))n

n!
(H) = H .

for all t ∈ R and in particular for t0. �

Let A := exp a < G.

Proposition 3.8.3. The following are equivalent definitions of the Weyl group:

(1) Let M ′ := {k ∈ K : AdG(k)a = a} and M := {k ∈ K : AdG(k)(A) =
A, for all A ∈ a}. Then M is normal in M ′ and W = M ′/M .

(2) W = NormG(A)/CentrG(A), where NormG(A) := {g ∈ G : gAg−1 = A}
and CentrG(A) := {g ∈ G : gA = Ag}.

(3) W = NormG(A) ∩ K/(CentrG(A) ∩ K), where NormG(A) and CentrG(A)
are as in (2).

Sketch of the proof. We are just going to show that:

(1) The groups M ′ and M are compact and have the same Lie algebra k0 :=
k ∩ g0 = {X ∈ k : [X,H] = 0 for all H ∈ a}

(2) If g ∈ M ′, then AdG(g) permutes the root vectors Hα and the root spaces
gα.
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It will follow that W is isomorphic to a subgroup of M ′/M . The fact that it is in
fact equal follows from the fact that M ′/M acts simply transitively on the set of
Weyl chambers, that is that if g ∈ K is such that AdG(g)C(H0) = C(H0) for some
regular element H0 ∈ a, then AdG(g)(H) = H for every H ∈ a.

Let m,m′ be the Lie algebras of M,M ′ respectively. We will show that

g0 ∩ k ⊆ m ⊆ m′ ⊆ g0 ∩ k ,

so that M ′/M will be discrete. Observe that M,M ′ are compact as they are closed
subgroups of K.

Let X ∈ m′. Then exp(tX) ∈ M ′ and AdG(exp(tX))(a) ⊂ a. Likewise,
adg(X)(a) ⊆ a. Let X = X0 ⊕

∑
α∈Σ Xα be the decomposition of X corresponding

to g = g0 ⊕
∑

α∈Σ gα. Let H ∈ a be a regular element. Then

a 3 adg(X)(H) = −
∑
α∈Σ

α(H)Xα ∈
∑
α∈Σ

gα ;

since a ∩
∑

gα = {0} and H ∈ a is regular – so that α(H) 6= 0 – then Xα = 0 for
all α ∈ Σ, and hence X = X0 ∈ g0.

Now let X ∈ g0∩k and H ∈ a any nonzero element. Then, since adg(X)(H) = 0,
it follows that for all t ∈ R,

AdG(exp(tX))(H) = exp(t adgX)(H) = H .

Hence exp(tX) ∈M and thus X ∈ m.
To see (2), if g ∈ M ′, and α ∈ Σ, let us define a linear form on a by β :=

α ◦ AdG(g)−1. It is easy to verify that

adg(H)(AdG(g)(X)) = β(H)X ,

so that β ∈ Σ and AdG(g)(gα) ⊂ gβ. Applying the same argument to g−1, we obtain
that AdG(g)−1(gβ) ⊆ gγ for some γ ∈ Σ. It follows that γ = α and AdG(g)gα = gβ,
namely AdG(g) permutes the root spaces.

To see that AdG(g) also permutes the root vectors, observe that, since AdG(g)
leaves invariant the Killing form, then Hence for all H ∈ a we have that

Bg(AdG(g)Hα, H) = Bg(Hα,AdG(g)−1H) = α(AdG(g)−1H) = β(H) = Bg(Hβ, H) ,

that if AdG(g)Hα = Hβ. �





CHAPTER 4

The Geometry at Infinity of a Symmetric Space of
Non-Compact Type

We will give some hints to the rich geometry at infinity of a Riemannian globally
symmetric space M of non-compact type. We have seen that M is a Hadamard
manifold, that is a complete simply connected Riemannian manifold of non-positive
sectional curvature. Therefore M is homeomorphic to Rdim(M) and can be compact-
ified by attaching its geometric boundary, which can be described, in the case of a
symmetric space, much more precisely than in the case of a general Hadamard man-
ifold. In addition to the geometric boundary, there is also the so-called Furstenberg
boundary. The two coincide in the case of a symmetric space of rank one, but in
general the Furstenberg boundary is the quotient of a dense subset of the geometric
boundary.

Any two points in a symmetric space can be joined by a geodesic, but the same
is not true for any two points of the boundary, unless the symmetric space is, again,
of rank one.

We will see these concepts illustrated in the specific example of SL(n,R)/SO(n).

4.1. Basic Definitions

Definition 4.1.1. We say that two geodesic rays γ1, γ2 are equivalent if

lim
t→∞

d(γ1(t), γ2(t)) <∞

The geometric (or visual) boundary ∂M of M is the set of geodesic rays in M
modulo this equivalence relation. If γ is a geodesic ray in M , we denote by γ(∞)
the point in ∂M that it defines.

We give M := M ∪ ∂M the cone topology generated by the open sets in M and
the cones defined as follows: if ε > 0, R >> 1, p ∈ M and ξ ∈ M , the cone CR,ε

p,ξ is
defined by

CR,ε
p,ξ := {y ∈M : d(p, y) > R, d(cx,ξ(R), cp,y(R)) < ε} ,

where cx,ξ is the unique unit speed geodesic from p in the class of ξ.
The isometry group acts on ∂M by homeomorphisms: if g ∈ G and ξ ∈ ∂M

is represented by γ, then g · γ is the class of the geodesic ray g · γ in M . Notice
that this assignment is well defined, that is it does not depend on the choice of
γ in the equivalence class defining ξ. In fact, if γ′ is another geodesic ray with

71
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γ′(∞) = ξ, then d(γ(t), γ′(t)) is bounded as t → ∞. Since g is an isometry, then
d(g · γ(t), g · γ′(t)) is also bounded, hence g · γ is equivalent to g · γ′.

4.2. SL(n,R)/SO(n)

Given a point ξ ∈ ∂M , let X ∈ p be the unit vector such that ξ = γ(∞), where
γX(t) = exp(tX) · o. Let {λ1(ξ), . . . , λk(ξ)} be the eigenvalues of X, numbered so
that λ1(ξ) > · · · > λk(ξ) and let Ej(ξ) be the eigenspace of X in Rn corresponding

to the eigenvalue λj(ξ) and let Vi(ξ) :=
∑i

j=1Ej(ξ). We call

{0} ⊂ V1(ξ) ⊂ V2(ξ) ⊂ · · · ⊂ Vk(ξ) = Rn

a flag. It can easily be shown that the vector λ(ξ) := (λ1(ξ), . . . , λk(ξ)) and the flag
F (ξ) := (V1(ξ), V2(ξ), . . . , Vk(ξ) satisfy the following properties:

(1) λ1(ξ) > · · · > λk(ξ);

(2)
∑k

i=1miλi(ξ) = 0, where mi := dimVi(ξ)− dimVi−1(ξ) (i.e. tr(X) = 0);

(3)
∑k

i=1miλ
2
i (ξ) = 1 (i.e. ‖X‖ = 1).

Conversely, if we have a vector λ and a flag F that satisfy (1), (2) and (3) or some
k ∈ N, k ≤ n, then there exists a unique ξ ∈ ∂M such that λ = λ(ξ) and F = F (ξ).
We call the pair (λ, F ) an eigenvalue-flag pair.

Example 4.2.1. For example if k = n (that is X = diag(λ1, . . . , λn) with λ1 > · · · >
λn, then F is a full or maximal or regular flag and Vj = span{e1, . . . , ej}.

The set of eigenvalue-flag pairs (satisfying the above properties) is a model of
the geometric boundary of SL(n,R)/SO(n).

Now we look at the action of G on the set of eigenvalue-flag pairs. If F =
(V1, . . . , Vk) is a flag and g ∈ SL(n,R), the assignment gF := (gV1, . . . , gVk) defines
an action of SL(n,R) on the space of flags in Rn.

Proposition 4.2.2. Let g ∈ SL(n,R) and ξ ∈ ∂M with associated eigenvalue-flag
pair (λ(ξ), F (ξ). Then the eigenvalue-flag pair associated to gξ is (λ(ξ), gF (ξ)), that
is:

(1) λ(gξ) = λ(ξ);
(2) g · F (ξ)) = F (gξ).

It follows immediately from the proposition that gξ = ξ if and only if gF (ξ) =
F (ξ).

Example 4.2.3. If F is a full flag, then the stabilizer of the corresponding point in
∂M is the group of upper triangular matrices U < SL(n,R).

The group SL(n,R) acts transitively on the space of full flags, that can hence be
identified with the homogeneous space SL(n,R)/U.

Definition 4.2.4. (1) Two flags F = (V1, . . . , Vk) and F ′ = (V ∗1 , . . . , V
∗
r ) are

in opposition if k = r and Vj ⊕ V ∗r−j+1 = Rn for all 1 ≤ j ≤ k.
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(2) The inverse of a flag F = (V1, . . . , Vk) is defined as F−1 := (V ∗1 , . . . , V
∗
k ),

where V ∗j is defined as the orthogonal complement of Vk−j+1 in Rn.

It follows from the definition that a flag is always in opposition to its inverse.
Let ξ ∈ ∂M , ξ = γX(∞) and let η = γX(−∞). Since γX(−∞) = γ−X(∞), then

it is easy to see that F (η) = F−1(ξ). Moreover it is also easy to see that F and
F ′ are in opposition if and only if there exists g ∈ SL(n,R) such that gF = F and
gF−1 = F ′.

It is clear from the definition that if F = (V1, . . . , Vk) is a full flag, there exists a
dense open subset O in the space of full flags such that F is in opposition to F ′ for
every F ′ ∈ O.

The following criterion in terms of eigenvalue-flag pairs will identify two points
in ∂M that can be joined by a geodesic.

Proposition 4.2.5. Let ξ, η ∈ ∂M be two distinct points with corresponding
eigenvalue-flag pairs (λ(ξ), F (ξ)) and (λ(η), F (η)). Then there is a geodesic γ such
that γ(∞) = ξ and γ(−∞) = η if and only if:

(1) F (ξ) and F (η) are in opposition, and
(2) λi(ξ) = −λk−i+1(η).

Proof. We show only that the two conditions are sufficient. Let ξ, η ∈ ∂M .
Let ξ = γX(∞) and ζ := γ−X(∞). Then by the discussion above there exists
g ∈ SL(n,R) such that gF (ξ) = F (ξ) and gF−1(ξ) = gF (ζ) = F (η). Since gF (ξ) =
F (ξ), it follows that gξ = ξ, so that ξ = gξ can be joined to gζ by the geodesic gγX .
But by (2) we know that

F (η) = gF (ζ) = F (gζ) and λ(η) = λ(ζ) = λ(gζ) ,

hence η = gζ since they have the same eigenvalue-flag pair. �





APPENDIX A

Preliminaries

A.1. Topological Preliminaries

Definition A.1.1. Let X by a a topological space and (Y, d) a metric space. A
family F ⊂ C(X, Y ) of functions if equicontinuous is for every x ∈X and every
ε > 0, there exists an open Ux ⊂ X such that for all f ∈ F and all x′ ∈ Ux,
d(f(x), f(x′)) < ε.

Theorem A.1.2 (Ascoli–Arzelà). Let X be a topological space and (Y, d) a metric
space. Give C(X, Y ) the compact-open topology and let F ⊂ C(X, Y ). Then:

(1) F is equicontinuous and the set Fa = {f(a) : f ∈ F} has compact closure
for all a ∈ X then F is relatively compact.

(2) The converse holds is X is locally compact and Hausdorff.

Definition A.1.3. A (topological) fiber bundle B consists of

(1) a topological space B (bundle space),
(2) a topological space X (base space),
(3) a continuous map P : B � X (projection),
(4) a topological space Y (fiber) such that for every x ∈ X the fiber p−1(x)

must be homeomorphic to Y .

Moreover a fiber bundle is locally trivial, that is

(5) for every x ∈ X, there exists a neighborhood V of x and a homeomorphism

ϕ : V × Y × p−1(V )

such that the diagram

p−1(V )

p

��

V × Yϕoo

pr1
yy

V

commutes, that is pϕ(x′, y) = x′ for all x′ ∈ V and y ∈ Y .

Finally a cross-section of B is a a continuous map σ : X → B that is a right inverse
to p, that is such that p ◦ σ(x) = x for all x ∈ X.

We consider now the case in which B is a group, so that X ia a G-homogeneous
space X = G/H and Y = H = StabG(p). This is what is called a principal
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bundle. In this case having a local cross-section implies (5). In fact we can define
ϕ : V ×H → p−1(V ) as

ϕ(x, h) := σ(x)h

and it is easy to verify that p◦ϕ(x, h) = x. For the inverse ϕ−1 we have the formula

ϕ−1(p−1(x)) = (x, x−1σ(p(x))) ,

where we need to verify that x−1σ(p(x)) ∈ H. In fact, by definition of σ,

p(x−1σ(p(x))) = p(x−1)p(σ(p(x))) = p(x−1)p(x) = p(x−1x) = p(e) ∈ H .

A.2. Differential Geometrical Preliminaries (added as we move along,
no logical order...)

Lemma A.2.1. Let M be a Riemannian manifold and p0 ∈ M . Then there exists a
ball Br(p0) that is a normal neighborhood of each of its points, with the following
property. Let p, q ∈ Br(p0) and let γ : [0, 1] → M the unique geodesic in Br(p0)
joining p = γ(0) and q = γ(1) and let L(γ) be its length. Then:

(1) For any (p′, v) near (p, γ̇(0)) with v ∈ Tp′M , ‖v‖ = 1, there exists a geodesic
γ′ in Br(p0) of the same length as L(γ) starting at p′ and with v as tangent
vector in p′.

(2) The data (p′, v) (and hence the geodesic γ′) depends smoothly on (p, γ̇(0)).

A.2.1. Completeness.

Theorem A.2.2 (Hopf–Rinow). Let (M, g) be a Riemannian manifold. The follow-
ing assertions are equivalent:

(1) M is geodesically compete, that is, all geodesics are defined over R or,
equivalently, Expp is defined on TpM for all p ∈M ;

(2) There exists p ∈M such that Expp is defined on TpM ;
(3) (M,d) is complete as a metric space.
(4) The closed bounded subsets of M are compact.

Moreover, each of these assertions implies the existence of a minimizing geodesic
between any two given points.

A.2.2. Connections.

Definition A.2.3. A C∞ or affine connection ∇ on a differentiable manifold (M, g)
is a map ∇ : Vect(M)× Vect(M)→ Vect(M), (X, Y )→ ∇XY with the properties
that for every f, f ′ ∈ C∞(M) and every X,X ′, Y, Y ′ ∈ Vect(M),

(1) ∇fX+f ′X′Y = f(∇XY ) + f ′(∇X′Y );
(2) ∇X(fY + f ′Y ′) = f∇XY + f ′∇XY

′ + (Xf)Y + (Xf ′)Y ′.

Remark A.2.4. (1) A C∞ connection ∇ is R-linear in both variables, but it is
C∞(M)-linear only in the first variable and not in the second one.



A.2. DIFFERENTIAL GEOMETRICAL PRELIMINARIES 77

(2) Another difference between the role that the two variables X, Y play, is
reflected in the fact that the value at the point p ∈ M of the vector field
∇XY depends only on the value Xp of the vector field X at p, but not on
the vector field X. (The same is not true of the dependence on Y .)

A connection allows to differentiate vector fields defined along curves. If γ : R→
M is a smooth curve, we call ∇γ̇X the covariant derivative of X along γ.

Definition A.2.5. We say that a vector field X along a curve γ is parallel if ∇γ̇X =
0.

While “constant” vector fields, that is vector fields Y ∈ Vect(M) such that at
every point p ∈M (∇XY )p = 0 for every X ∈ Vect(M) rarely exists, it follows from
the existence and uniqueness of the solutions of differential equations always exist:

Proposition A.2.6. Let M be a differentiable manifold. Given a curve γ and a
vector v ∈ Tγ(0)M , there exists a unique vector field Xv parallel along γ such that
Xγ(0) = v.

The parallel transport along γ from γ(0) to γ(t) is defined as the linear isomor-
phism Tγ(0)M → Tγ(t)M given by v 7→ (Xv)γ(t). This gives an identification of
the tangent spaces at γ(0) and at γ(t). Geodesics in a differentiable manifolds are
defined as differentiable curves γ : I →M such that ∇γ̇(t)γ̇(t) = 0 for all t ∈ I ⊂ R.

One could add more conditions to the ones definining an affine connection. An
affine connection satisfying also condition (3) below is called a symmetric connection.

Definition A.2.7. An affine connection that in addition satisfies

(3) it is symmetric, namely [X, Y ] = ∇XY −∇YX, and
(4) Xg(Y, Y ′) = g(∇X , Y, Y

′) + g(Y,∇XY
′)

is called Riemannian connection.

Theorem A.2.8 (Fundamental Theorem in Riemannian Geometry). Given a Rie-
mannian manifold (M, g), there exists a unique Riemannian connection, called the
Levi-Civita connection.

The following lemma is not at all surprising:

Lemma A.2.9. Let (M, g) be a Riemannian manifold with Levi-Civita connection∇.
Let γ : R→M be a smooth curve, Y a parallel vector field along γ and f ∈ Iso(M).
Then f∗Y is a parallel vector field along f ◦ γ.

Proof. Let us consider the map Vect(M) × Vect(M) → Vect(M) defined by
(X, Y ) 7→ f−1

∗ (∇f∗Xf∗Y ) =: DXY . If we show that DXY satisfies (1) through
(4) of Definition A.2.3, then by Theorem A.2.8, ∇XY = f−1

∗ (∇f∗Xf∗Y ), so that
f∗(∇XY ) = ∇f∗Xf∗Y . If X = γ̇, then f∗(∇γ̇Y ) = ∇f∗γ̇f∗Y = ∇(f◦γ)̇f∗Y , so that
∇(f◦γ)̇f∗Y = 0 if ∇γ̇Y = 0.
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Properties (1) and (2) are obvious. To see (3), recall that [f∗X, f∗Y ] = f∗[X, Y ],
so that

∇f∗Xf∗Y −∇f∗Y f∗X = [f∗X, f∗Y ] = f∗[X, Y ] = f∗(∇XY −∇YX) .

It follows that

[X, Y ] = ∇XY −∇YX = DXY −DYX ,

so that (3) is verified. Then (4) follows from the following chain of equalities:

g(DXY, Y
′) + g(Y,DXY

′)

=g(f−1
∗ (∇f∗Xf∗Y ), Y ′) + g(Y, f−1

∗ (∇f∗Xf∗Y
′)

=g(∇f∗Xf∗Y, f∗Y
′) + g(f∗Y,∇f∗Xf∗Y

′)

=(f∗X)g(f∗Y, f∗Y
′)

=f∗X)f∗(g(Y, Y ′))

=Xg(Y, Y ′) .

�

In fact, this is only a particular case of the fact that if f : M → M is a
diffeomorphism and ∇ : Vect(M) × Vect(M) → Vect(M) is an affine connection,
then D : Vect(M) × Vect(M) → Vect(M) defined by DXY := f−1

∗ (∇f∗Xf∗Y ) is
also an affine connection. In particular, if M is a Lie group and f := Lg is the left
translation via g ∈ G, then a connection that satisfies

∇XY := (Lg)
−1
∗ (∇(Lg)∗X(Lg)∗Y )(A.2.1)

is called left invariant.

Here is a result about the differential of the exponential map associated to an
affine connection. Recall that an affine connection is analytic if the map p 7→ (∇XY )p
is analytic for any two analytic vector fields X, Y ∈ Vect(M).

If X ∈ TpM , for p ∈ M , we denote by X∗ the vector field defined on a normal
neighborhood around p ∈M , obtained by parallel translation of X along a geodesic
joining two points.

Recall that there exist neighborhoods Nq(M) of q ∈ M and VqM of 0 ∈ TqM
such that Expq : Vq → NqM is a diffeomorphism. The differential at X ∈ VqM
will hence be: dX(Exp∇)q : TX(VqM) → T(Exp∇)q(X)Nq(M) or else, by identifying
TX(VqM) with TqM ,

dX(Exp∇)q : TqM → T(Exp∇)q(X)(M) .

An analogous relation holds for tX, provided that t is small enough that tX ∈ VqM .
If X ∈ TqM , for q ∈ M , we denote by X∗ the vector field defined on a normal

neighborhood around q ∈M , obtained by parallel translation of X along a geodesic
joining two points.
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Theorem A.2.10 ([Hel01, Theorem I.6.5]). Let M be an analytic manifold with
an analytic connection. Let q ∈ M and X ∈ TqM . Then there exists ε > 0 such
that for Y ∈ TqM ,

(dtX(Exp∇))(Y ) =

(
∞∑
n=0

θ(−tX∗)n

(n+ 1)!
(Y ∗)

)
(Exp∇)(tX)

for |t| < ε, where θ(X) := [X, Y ].

A.2.3. Curvature. We know that if X, Y are vector fields, [X, Y ] measures
the extent to which X and Y do not commute. We can also define a quantity that
measures the extent to which ∇XY and ∇YX do not commute, by adding also a
term that depends on [X, Y ] and “makes things better”.

Definition A.2.11. Let M be a manifold with an affine connection. The curvature
of M is a multilinear mapping (when Vect(M) is considered as a C∞(M)-module)
R : Vect(M)× Vect(M)× Vect(M)→ Vect(M) defined by

R(X, Y )Z := ∇X(∇YZ)−∇Y (∇XZ)−∇[X,Y ](Z) .

To every X, Y ∈ Vect(M), it associates the curvature operator

R(X, Y ) : Vect(M)→ Vect(M)

It follows from the presence of the term ∇[X,Y ] that at each point p ∈ M the
vector (R(X, Y )Z)p depends only on Xp, Yp, Zp and not on their values in a neigh-
borhood of p. Thus R defines a linear transformation R(Xp, Yp) : TpM → TpM and
in fact R : TpM × TpM → Lin(TpM) is a map that to two vectors at the point p,
associates a linear operator from TpM into itself.

If M is a Riemannian manifold, then the Riemannian metric allows us to see the
curvature as a (4,0)-tensor, by setting R(X, Y, Z, T ) = g(R(X, Y )Z, T ).

The Riemann curvature tensor has the following symmetries:

(R1) R(X, Y, Z, T ) = −R(Y,X,Z, T ) = R(Z, T,X, Y );
(R2) R(X, Y )Z +R(Y, Z)X +R(Z,X)Y = 0 (First Bianchi Identity)

It is not difficult to see that the curvature tensor and the curvature operator
completely determine each other.

Given a Riemannian manifold, there are other notions of curvature. The sec-
tional curvature K(P ) of a 2-plane P in TpM is defined as follows. If {u, v} is an
orthonormal basis of P (orthonormal with respect to the Riemannian metric g) then

K(P ) := −R(u, v, u, v) .(A.2.2)

The sectional curvature coincides with the usual notion of Gaussian curvature on
a surface. Namely, if P is a tangent 2-plane in TpM and Σ is a portion of surface
in M tangent to P at p, then the sectional curvature of P is exactly the Gaussian
curvature of Σ at p.
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Moreover the symmetry properties of the Riemann curvature tensor imply that
it can be completely determined by knowing the sectional curvature on all sections
of TpM .

A.2.4. Totally Geodesic Submanifolds.

Definition A.2.12. Let M be a Riemannian manifold and N ⊂ M a connected
submanifold. Let p ∈ N The submanifold N is geodesic at p if given any tangent
vector v ∈ TpN , the M -geodesic γv : −(ε, ε) → M with γ(0) = p and γ̇(0) = v is
contained in N .

The submanifold N is totally geodesic if it is geodesic at every point p ∈ N .

It is not difficult to show that then the M -geodesic γ ⊂ N is also an N -geodesic
and that any N -geodesic is also an M -geodesic. As a consequence, if M is complete,
then N is complete.

Totally geodesic submanifolds in Riemannian manifolds are not frequent. If
M = Rn, then linear subspaces and their translates are totally geodesic. If M =
Sn ⊂ Rn+1, then the intersection of Sn with linear subspaces are totally geodesic. It
was proven by Cartan, that if a Riemannian manifold M has the property that for
every p ∈ M and for every two-dimensional plane P ⊂ TpM , there exists a totally
geodesic submanifold tangent to P , then M has constant curvature.

Theorem A.2.13. Let M be a Riemannian manifold and N a connected complete
submanifold. Then N is totally geodesic if and only if the M -parallel transport
along curves in N sends tangent vectors to N to tangent vectors to N .

One direction of the above theorem is obvious if we replace ”curve” with ”geo-
desic”.
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